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Abstract

The National Flood Insurance Program’s move to actuarially fair premiums corrects historical
subsidies and reduces moral hazard, but has two unintended consequences: a fiscal spillover
onto federal disaster aid as insurance coverage declines in flood-prone areas, and household
exposure to uninsurable reclassification risk from uncertain climate projections. We find that
each 1% increase in insurance coverage saves $203 per house in ex post federal aid when a
flood occurs. We then use variance across climate models to estimate a household willingness-
to-pay to avoid climate risk uncertainty of $65 annually. In contrast, reductions in moral hazard
from correctly priced climate risk, through both migration and mitigation, are small. We estimate
an optimal subsidy to flood insurance of 57%, comparable to the level of subsidization before
RR2.0.
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1 Introduction

The increased volatility of weather patterns around the world due to climate change has high-
lighted the essential role of natural disaster insurance. In the U.S. alone, over the last 10 years
(2015-2024), there has been approximately $1.4 trillion of property damage from natural disasters
(NOAA, 2025). Damage from random weather events is exactly the type of major risk against
which individuals should naturally want to insure. Indeed, insurance against natural disasters is
big business: the total premiums paid for homeowners insurance in 2024 were estimated at $172
billion (NAIC, 2024).

Yet, in the U.S., insurance against weather-induced damage is far from complete. Estimates
suggest that 70% of the damage caused by floods is uninsured ex ante (Federal Reserve Bank of
Philadelphia, 2016). But not necessarily ex post, as the U.S. government spends large amounts
assisting individuals, businesses, and governments in the wake of disasters, primarily through
Federal Emergency Management Agency (FEMA) assistance programs. The total ex post federal
disaster relief obligations in the U.S. in fiscal year 2024 were $52 billion (U.S. Federal Emergency
Management Agency, 2025), which is approximately 30% of the homeowners insurance premium
spending in that year. This insurance gap is particularly acute for flooding: despite federal man-
dates for high-risk zones, we calculate that nationwide flood insurance coverage is 5%, exposing
taxpayers to over $1 billion of ex post aid costs per year; even weighting by flood risk, the cover-
age rate is only 18%, and the highest risk areas have coverage rates below 25% (Amornsiripanitch
et al. (2024)).

The market for disaster insurance is inhibited by multiple, cross-cutting, market failures. The
first is the “Samaritan’s Dilemma” induced by the availability of ex post coverage for disaster-related
damage. As a result of these ex post promises, individuals may incompletely cover themselves ex
ante with insurance. Efforts to resolve this incomplete coverage have failed, resulting in the low
coverage rates noted above.

Historically, a second market failure—moral hazard—was a direct consequence of policy aimed
at mitigating the first. Flood insurance has been provided by the public National Flood Insurance
Program (NFIP), which for decades set premiums that were more than 50% lower than expected
costs and which did not map to the true underlying flood risk, with the largest subsidies for the most
flood-prone areas (Congressional Budget Office (2017)). This implicit subsidy, while encouraging
insurance take-up, masked the true cost of risk and thus promoted inefficient over-development
and under-mitigation in flood-prone areas (Fabian (2024), Ge et al. (2022)).

The NFIP’s 2021 ”Risk Rating 2.0” (RR2.0) reform, the program’s first major overhaul in 50
years, undoes this historical subsidy by moving to actuarially-sound premiums. The new method-
ology integrates geospatial data and advanced catastrophe models to estimate property-level risk.
This policy has been praised1 for potentially offsetting the incentives to overbuild – and to insuffi-

1“By communicating flood risk more clearly, the new methodology should help policyholders make more informed
decisions on the purchase of adequate insurance and on mitigation actions to protect against flooding.” - Association of
State Floodplain Managers, ASFPM (2021)
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ciently remediate – in flood-prone areas.
But this reform is a classic example of the theory of the second best: fixing one market failure

may not improve welfare in the presence of others. This paper argues that RR2.0 creates two sig-
nificant unintended consequences. First, higher flood insurance premiums lead to lower coverage,
which increases ex post recovery spending. Second, more tightly tying premiums to flood risk in a
world of enormous uncertainty about the geographic distribution of coming flood risks imposes a
welfare cost on risk-averse households through reclassification risk.

These offsetting market failures have not previously been explored or evaluated relative to the
costs of subsidies. In this paper, we provide the first comprehensive measurement of the costs
and benefits of subsidizing flood insurance.

We begin with a model for the optimal insurance subsidy in the presence of moral hazard,
spillovers to ex post assistance, and dynamically evolving climate risk. Households face two forms
of risk: the static uncertainty about whether a flood will occur or not, and the dynamic uncertainty
as to whether their property will become higher or lower risk in the future. While typical models of
optimal insurance focus on the former, we hold the generosity of insurance fixed and analyze the
latter. Households choose whether to buy insurance, the amount of costly mitigation to undertake,
and whether to locate in a higher or lower risk location. Anticipating this, the planner chooses
a level of premium subsidy to trade off the gains from reclassification-risk insurance and the re-
duced spillover to ex post assistance against the induced moral hazard from distorted coverage,
mitigation, and location choices.

The benefits from a premium subsidy are twofold: coverage increases thereby reducing future
ex post assistance, and a portion of dynamic premium risk is insured. Our focus on the Samaritan’s
dilemma inverts the typical existing analyses: instead of quantifying how much ex post assistance
crowds out insurance, we measure how subsidizing insurance reduces the fiscal externality from
ex post assistance. In terms of reclassification risk, we are careful to distinguish and measure
genuinely diversifiable risk from aggregate uncertainty across climate states that is uninsurable in
the cross-section.

The cost of a premium subsidy is moral hazard: household actions that are not chosen optimally
from a social point of view. Households make their insurance, mitigation, and location decisions
trading off only the private costs and benefits. They do not consider costs to the planner, in particu-
lar, increased subsidy outlays or ex post assistance. Put another way, under a substantial subsidy,
households are immunized from a portion of their true risk, and thus make decisions that increase
that risk beyond the social optimum. It is this moral hazard that RR2.0 was intended to correct.

This model allows us to measure the optimal flood insurance structure as a function of five key
reduced-form statistics: the fiscal spillover from NFIP coverage onto FEMA aid; the elasticity of
demand for NFIP coverage with respect to its price; the certainty equivalent of the utility loss from
higher reclassification risk; the elasticity of locational decisions with respect to insurance prices;
and the elasticity of flood remediation with respect to insurance prices. We then turn to estimating
these key empirical quantities.
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First, we measure the fiscal spillover from the decrease in NFIP coverage onto FEMA aid. To
do so, we assemble a county–year dataset combining flood insurance coverage, flood damages
(insured and uninsured), and ex post government flood spending. Our empirical strategy faces two
challenges: counties with severe floods may have both higher insurance uptake and higher ex post
spending, and other unobserved factors may jointly influence coverage and recovery spending. We
address the first by flexibly controlling for overall flood damage, comparing otherwise similar floods
that strike counties with different insurance coverage levels. To address the second, we draw on
the insight of Gallagher (2014): insurance demand temporarily increases after a flood in one’s own
or in a neighboring county. We instrument for flood insurance coverage with whether there was
a flood in the past five years in a neighboring county. We show in an event study framework that
there are no pre-trends in this relationship and run a host of other robustness checks as well.

Applying these methodologies, we estimate a sizable offset of ex post government spending
due to more ex ante flood insurance. We identify these effects from quasi-random timing between
floods; we do not compare flooded to non-flooded counties. We estimate that each additional 1% of
houses that are insured lowers ex post government spending by $175-$203, should a flood occur.

Second, we estimate the elasticity of demand for NFIP insurance. To do so, we turn to a
new source of identification: the shift to RR2.0. Specifically, through a FOIA request we obtained,
for each property, its current premium and the full-risk premium it is transitioning to. Hence, our
identification is within-property, as households face increasing prices along this transition path,
without knowing in advance the final full-risk price. We estimate an elasticity of demand of -0.32,
which is in the center of existing estimates.

Third, we measure the increased reclassification risk from risk-based pricing. As we document,
there is substantial uncertainty about not only the mean path of climate change but also in the
variance of that path across places. The more flood insurance prices are a function of local climate
risk, the more households are exposed to premium volatility. This parallels the discussion of re-
classification risk in health insurance markets (Handel et al. (2015), Ghili et al. (2023)): while more
actuarially fair pricing sends correct price signals, it adds dynamic risk. Subsidies socialize some
of this dynamic risk.

To quantify the reclassification risk households now face under RR2.0, we combine the uni-
verse of NFIP policies with state-of-the-art climate projections (Gori et al. (2022)). We estimate
an empirical model of NFIP premiums, regressing RR2.0 premiums on a granular set of property
characteristics and current flood risk factors. Holding property characteristics constant, we then
use this model to project what premiums would be in 2070 under the eight distinct climate models
(all calibrated to the same total level of warming) analyzed by Gori et al. (2022). In other words,
we proxy for cross-sectional uncertainty, holding aggregate risk fixed, about local climate risk with
the variability across climate models.

We find that there is substantial uncertainty in future projections. The average household faces
a standard deviation of $3,317 in 2070 across the eight models. The premium risk households
face has an aggregate component (all premiums are expected to rise) and an idiosyncratic one
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(some properties’ expected risk rises far more than others’). Community rating through a subsidy,
i.e., undoing risk-based pricing, effectively insures the latter. We compute households’ WTP for
insurance against idiosyncratic reclassification risk. We find that the average household WTP
against idiosyncratic reclassification risk is approximately $65. This represents roughly 3.6% of
the average current premium and 1% of the expected 2070 premium. Finally, we estimate the
impact of premium changes on moral hazard. To do this, we estimate the behavioral response of
households to premium changes along two margins: long-run relocation decisions and short-run
property-level mitigation efforts. These estimates allow us to quantify the primary intended benefit
of RR2.0—reducing inefficient over-development and under-mitigation in flood-prone areas.

To quantify the effect of RR2.0 on migration out of high-risk areas, we use quarterly U.S. Postal
Service data on occupied residential addresses at the census-tract level. We compare tracts where
the median property saw a premium increase under RR2.0 to those in which the median property’s
insurance premium decreased. Our event study demonstrates that these tracts were on similar pre-
trends prior to RR2.0, but that subsequently 0.86% of the population moved from the higher risk
locations to the lower risk locations. For reference, Boustan et al. (2020) find that a typical natural
disaster generates migration of about 1.5%. As such, finding almost half of this effect simply from
an insurance price change is a relatively large effect. We use this estimated elasticity to quantify
the welfare gains from the more efficient locational decisions induced by RR2.0.

To measure the effect of changed mitigation decisions, we use the universe of “Elevation Cer-
tificates” (EC) filed in Florida since 2017. An EC must be submitted prior to building to certify
compliance with flood-zone-related building practices, and elevating a property is the primary form
of risk-reduction against floods. Since these requirements differ inside and outside the high-risk
flood zone, we compare those that faced a higher versus a relatively lower price increase inside
the high-risk flood zone, and separately outside the high-risk flood zone. Properties within the
high-risk zone are already subject to elevation requirements that were unchanged by the removal
of premium subsidies. Accordingly, we find no differential effect on elevation by risk inside the
high-risk flood zone. In contrast, outside of this zone, there are no requirements to elevate, poten-
tially allowing individual decisions to be more sensitive to pricing incentives. Indeed, we find that
properties in moderate-risk areas that experienced larger premium increases saw a 10% increase
in the probability of being elevated by more than three feet compared to low-risk properties.

Having estimated these five key parameters, we then return to our model of optimal flood in-
surance subsidies. We find that, given the much higher FEMA spillover and reclassification risk
reduction than the mitigation and migration moral hazard effects, the optimal subsidy to flood in-
surance is quite high. Our central estimate, 57%, is similar to the pre-RR2.0 level of subsidization.
Interestingly, we find that this estimate is quite robust to demand elasticities (since both sides are
affected linearly), that redistributive impacts are not significant, and that allowing for heterogeneity
in our estimated costs and benefits only strengthens our conclusion, and that even applying an
extreme set of assumptions on key parameters we obtain a lower-bound subsidy rate of 30%.

Our paper proceeds as follows. Section 2 provides background on flood insurance and a review
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of previous literature on this topic. Section 3 sets out a model of optimal dynamic flood insurance
with location and mitigation choices. Section 4 estimates the spillover to ex post FEMA spending
from decreased NFIP coverage, while Section 5 estimates the demand elasticity for flood insurance.
Section 6 then explains and explores the magnitude of welfare loss from reclassification risk with
actuarially fair premiums. Sections 7 & 8 explore the two margins of moral hazard, location and
mitigation. Section 9 puts all of these estimates together to calculate the optimal subsidy. Section
10 concludes.

2 Background

2.1 Flood Insurance in the U.S.

The vast majority of flood insurance in the U.S. is provided by the National Flood Insurance Program
(NFIP). Launched in 1968 and administered by FEMA, the NFIP has roughly 4.7 million policies
in force that provide coverage of $1.28 trillion (Federal Emergency Management Agency (2023)).
This accounts for fewer than 1 in 20 households, although insurance penetration reaches up to
40% in certain coastal locations.

The NFIP issues a single type of policy: the Standard Flood Insurance Policy (SFIP). The SFIP
pays for actual damages caused by floods up to residential coverage limits of $250,000 for the
structure and $100,000 for personal contents. Most policies are written and claims administered
by a “Write-Your-Own” private insurer, but contracts are set and the risk is ultimately borne by the
NFIP.

Historically, there has been no non-negligible private flood insurance market, likely because
of the subsidized rates offered by the NFIP. However, in recent years, as the NFIP has changed
its pricing procedure to better capture property-specific risk, and also because of the relatively
low coverage limits of the NFIP, the private flood insurance market has grown. As of 2023, ap-
proximately 350,000 policies were written by private insurers (National Association of Insurance
Commissioners (2024)). This small, but growing, market is essentially irrelevant to the period we
study (2010 to 2021). In a world with private coverage that mimics public coverage, our policy
prescription would extend to market-wide subsidies; but if private coverage is more generous than
public coverage—and in particular exceeds the limits reimbursed by FEMA—optimal private sub-
sidies may be smaller.

2.2 Ex-Post Flood Recovery Spending

Federal ex post assistance for flooded households arrives mainly through three channels. First,
there is FEMA’s Individuals and Households Program (IHP), which provides grants for emergency
repairs, temporary housing and limited personal-property losses. These grants typically cover only
a fraction2 of typical rebuilding costs. Second are SBA disaster home loans, which let owner-

2In our sample, the (weighted) average IHP payout was $20k against total damage of approximately $144k.
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occupants borrow up to $500,000 at subsidized rates to restore their primary residence and up to
$100,000 for damaged contents; these loans must be repaid and cannot be taken against damages
covered by flood insurance. Third, after the acute response phase, communities can apply to
FEMA’s Hazard Mitigation Grant Program (HMGP) to finance buyouts, elevations or retrofits for
individual homes.

Because federal law bars duplication of benefits, each of these programs is explicitly offset by
any insurance proceeds. In practical terms, a homeowner with an NFIP policy may see their IHP
grant reduced to zero and will borrow less—or nothing—from SBA, while widespread coverage in a
disaster county lowers total IHP outlays and therefore the HMGP formula allocation. The average
NFIP claim payment between 2016 and 2021 was about $66,000, roughly an order of magnitude
larger than the typical IHP grant, so even modest increases in pre-event coverage can translate
into sizable federal savings ex post (Congressional Research Service (2023)).

To the extent that owners view ex post aid as dependable, it can crowd out ex ante insurance
purchase, a point discussed in the literature review section below. Yet the same ex post approach
insures against reclassification risk: owners outsidemapped flood zones who never purchase NFIP
coverage can still receive federal grants if climate change or new flood maps suddenly expose
them to increased flood risk. Our analysis asks how large the fiscal trade-off is—how much these
household-facing programs shrink when more properties buy insurance up front—and whether that
offset meaningfully defrays the cost of any premium subsidies.

2.3 Related Literature

A large body of work in economics seeks to explain the “disaster insurance puzzle”—why ratio-
nal agents fail to insure against low-probability, high-consequence events (Kunreuther and Pauly
(2004)). For flood insurance, the leading explanation is that risk perceptions are myopic and driven
by salience. Gallagher (2014) shows that direct or nearby experience of a flood dramatically in-
creases insurance take-up, an effect that decays over time. This finding that households learn
from disasters is reinforced by subsequent work (Kousky (2010)). Other research explores how
adverse selection and adaptation incentives interact (Wagner (2022)) and how new risk-based
pricing regimes affect demand when risk information is not clearly provided (Mulder and Kousky
(2023)). Furthermore, studies investigating the primary regulatory tool—the mandatory purchase
requirement for federally-backed mortgages—find its effectiveness is limited by inconsistent com-
pliance and lax enforcement by mortgage servicers (U.S. Government Accountability Office (2017,
2022)).

A second strand examines whether generous disaster assistance depresses subsequent insur-
ance demand. Raschky et al. (2013) exploit cross-country variation in relief schemes to show that
assured post-event aid crowds out private flood cover. In the United States, Kousky et al. (2018)
match NFIP records to FEMA grant data and show that an individual-assistance grant reduces the
next year’s average insurance purchase on the intensive margin. Deryugina and Kirwan (2018)
document a parallel “Samaritan’s dilemma” in crop insurance, finding that farmers expecting large
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federal bailouts both insure less and invest less in costly inputs. Philippi and Schiller (2024) demon-
strate the tradeoff between ex ante subsidy and ex post disaster insurance theoretically, and exhibit
empirical evidence from German winegrowers consistent with this tradeoff.

The link between ex ante insurance and ex post aid has been studied almost exclusively in
one direction. The literature has documented how the promise of government relief can suppress
insurance demand. Yet, to our knowledge, no empirical study has estimated the reverse effect: the
direct, mechanical reduction in federal ex post spending that results from higher ex ante insurance
coverage. This paper is the first to provide a credible estimate of this trade-off.

We also focus on reclassification risk in flood markets. Annual contracts are well known to
expose policyholders to reclassification risk (Cochrane (1995); Hendel and Lizzeri (2003)). While
the magnitude of this risk has been quantified primarily in health-insurance markets Handel et al.
(2015); Ghili et al. (2023), our contribution is the first to leverage state-of-the-art climate models to
estimate reclassification risk in the context of natural catastrophes, and to assess whether socializ-
ing that idiosyncratic volatility through targeted NFIP premium subsidies can generate substantial
welfare gains.

Finally, we provide direct evidence for moral hazard in terms of mitigation and location choices
due to price changes in the context of climate-risk-exposed home insurance. Existing evidence
shows that lower flood insurance subsidies reduced new development (Fabian (2024)), and the
availability of insurance stimulates population movements (Peralta and Scott (2024), Browne et al.
(2019)). However, some studies (Hudson et al. (2017), Kousky (2019) find minimal or no effect of
insurance prices on risk reduction. On the location margin, various papers find that natural disas-
ters cause substantial population movements ((Boustan et al., 2020), (Aron-Dine, 2025), (Deryug-
ina et al., 2018)). Relatedly, Henkel et al. (2024) show that whether or not a disaster received
a FEMA-enabling presidential declaration affects recovery and subsequent out-migration. To our
knowledge, this is the first paper to identify the effects of changes in disaster-insurance prices -
as opposed to eligibility or map changes - on both household location (migration) and structural
mitigation (elevation).

3 A Model of Optimal Insurance Subsidies

In this section, we study a model of optimal insurance subsidies in the presence of moral hazard,
dynamic reclassification risk, and the crowd out of ex post assistance. From this model, we derive
sufficient statistics for the optimal insurance subsidy that we subsequently estimate.

The Household’s Problem

Let 𝑃𝑖(𝜔) be the baseline, actuarially fair premium. The planner chooses a subsidy level 𝑠. This
determines a post-subsidy premium that the household actually pays ̃𝑃𝑖(𝜔) = (1 − 𝑠) 𝑃𝑖(𝜔).
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Given the subsidy, household 𝑖 makes three choices: insurance 𝑞𝑖 ∈ [0, 1], location 𝑥𝑖 ∈ [0, 1]
and mitigation 𝑚𝑖 ∈ [0, 𝑤). For expositional clarity, we model all three as continuous. In Section VII,
when we calibrate the formula for optimal flood insurance to the data, we use the realistic, discrete
analogues. Mitigation 𝑚 costs 𝜅𝑖(𝑚𝑖). Choosing to locate in 𝑥 delivers dollarized amenity value
Γ𝑖(𝑥𝑖).

The possible flood damage 𝐿𝑖 depends on the household’s choice of location and mitigation,
the future climate scenario 𝜔 and the idiosyncratic flood realization (or not) 𝜉. Of the uninsured
losses, we assume a portion 𝑓 > 0 is covered by the government (i.e. FEMA) ex post. Finally,
the government budget is balanced by some (climate state-specific) tax 𝑇𝑖(𝜔). Hence, household
consumption, after climate state 𝜔 and idiosyncratic flood shock 𝜉 realize, is given by

𝑐𝑖(𝜔, 𝜉) = 𝑦𝑖 + Γ𝑖(𝑥𝑖) − 𝐶𝑖(𝑚𝑖) − 𝑞𝑖 ̃𝑃𝑖(𝜔; 𝑠, 𝑥𝑖, 𝑚𝑖) − (1 − 𝑓)(1 − 𝑞𝑖) 𝐿𝑖(𝜔, 𝜉; 𝑥𝑖, 𝑚𝑖) − 𝑇𝑖(𝜔).

The household chooses (𝑥𝑖, 𝑚𝑖, 𝑞𝑖) to solve

𝑉𝑖(𝑠) = max
(𝑥𝑖,𝑚𝑖,𝑞𝑖)

𝔼𝜔𝔼𝜉[𝑢(𝑐𝑖(𝜔, 𝜉; ⋅))],

with 𝑢 strictly increasing and concave, and 𝑉𝑖 is the indirect utility.
The household faces two forms of uncertainty. First, the ’standard’ risk from a flood, encoded

by 𝜉. This is insured by 𝑞. Second, and novel to this setup, the household faces risk over their
future premium due to an uncertain aggregate climate state 𝜔. Some of this reclassification risk
is implicitly insured via a subsidy 𝑠; at the limit, where 𝑠 = 1 there is no future premium risk.
However, because 𝜔 represents a global climate state, only a portion of the reclassification risk
can be insured.

Premium Decomposition We can decompose each individual’s premium price 𝑃𝑖(𝜔) into an
individual-specific component, a scenario-specific component, and an idiosyncratic component:

𝑃𝑖(𝜔) = ̄𝑃 (𝜔) + 𝑎𝑖 + 𝜀𝑖𝜔

where ̄𝑃 (𝜔) is the average premium in scenario 𝜔, 𝑎𝑖 = 𝔼𝜔[𝑃𝑖(𝜔) − ̄𝑃 (𝜔)] is the type-specific fixed
effect, and 𝜀𝑖𝜔 is the residual with 𝔼𝜔[𝜀𝑖𝜔] = 0.

We want to quantify the value of a premium subsidy 𝑠 in insuring the idiosyncratic component
only. The scenario-specific risk ̄𝑃 (𝜔) affects the entire world at once, and so cannot be diversi-
fied. Similarly, ‘insuring’ predictable differences in individual-specific risk 𝑎𝑖 is simply redistribution,
which we do not focus on here.
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The Planner’s Problem

The planner chooses 𝑠 to maximize

max
𝑠

𝑉𝑖(𝑠) subject to ∑
𝑖

𝑇 (𝜔) = ∑
𝑖

𝑠 𝑞𝑖 𝑃𝑖(𝜔)
⏟⏟⏟⏟⏟

premium subsidy on insured

+ ∑
𝑖

𝑓 (1 − 𝑞𝑖) 𝑃𝑖(𝜔)
⏟⏟⏟⏟⏟⏟⏟⏟⏟

expected FEMA on uninsured

∀𝜔.

Note, we have assumed that a budget deficit is funded by a lump-sum tax such that individuals
do not internalize the impact their actions have on the aggregate budget deficit. That is, moral
hazard occurs through individuals’ choices of insurance, mitigation and location. This assumes
that the flood insurance and disaster aid program are funded by the same people they benefit; we
do not analyze the distributional consequences of the average taxpayer possibly differing from the
average disaster aid recipient.

General Formula for the Optimal Subsidy

To state the general condition for the optimal subsidy level 𝑠, we define the semi-elasticity of insur-
ance choice 𝑞 with respect to a change in the post-subsidy price ℰ𝑞

𝑖 ≡ 𝜕𝑞∗
𝑖

𝜕 ln𝔼𝜔[𝑃̃𝑖(𝜔)] , and identically
for ℰ𝑥

𝑖 and ℰ𝑚
𝑖 . The following proposition presents a general formula with dynamic risk, both aggre-

gate and idiosyncratic, state-specific adverse selection, and a decomposed fiscal externality from
moral hazard.
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Proposition 1 (Optimal Subsidy: General Condition). The optimal premium subsidy 𝑠 solves:

(1 − 𝑠) ∑
𝑖

(Cov𝜔(𝑢′
𝑖, 𝑞∗

𝑖 𝜀𝑖𝜔) − 𝑞∗
𝑖 Cov𝜔(𝑢̄′(𝜔), 𝜀𝑖𝜔))

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
idiosyncratic insurance − macro–idiosyncratic correction

+ (1 − 𝑠) ∑
𝑖

𝑞∗
𝑖 𝑎𝑖(𝔼𝜔[𝑢′

𝑖] − 𝔼𝜔[𝑢̄′(𝜔)])
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

risk-class (𝑎𝑖) redistribution

+ (1 − 𝑠) 𝔼𝜔[ ̄𝑃 (𝜔)] ⋅ 𝔼𝜔[ ∑
𝑖

𝑞∗
𝑖 (𝑢′

𝑖(𝜔) − 𝑢̄′(𝜔))]
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

average selection

+ (1 − 𝑠)Cov𝜔( ̄𝑃 (𝜔), ∑
𝑖

𝑞∗
𝑖 (𝑢′

𝑖(𝜔) − 𝑢̄′(𝜔)))
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝜔-specific selection

= − 𝔼𝜔[𝜇(𝜔)( ∑
𝑖

((𝑠 − 𝑓) 𝑃𝑖(𝜔)) ℰ𝑞
𝑖

⏟⏟⏟⏟⏟⏟⏟⏟⏟
coverage fiscal externality

+ ∑
𝑖

(𝑠 𝑞∗
𝑖 + 𝑓(1 − 𝑞∗

𝑖 )) 𝜕𝑃𝑖(𝜔)
𝜕𝑚 ℰ𝑚

𝑖
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

mitigation fiscal externality

+ ∑
𝑖

(𝑠 𝑞∗
𝑖 + 𝑓(1 − 𝑞∗

𝑖 )) 𝜕𝑃𝑖(𝜔)
𝜕𝑥 ℰ𝑥

𝑖
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

location fiscal externality

)].

The first term on the left – idiosyncratic insurance – is the ‘standard’ value of insurance term; it
is the continuous analogue of the differences in marginal utility in the good versus bad state, as we
show in Example 1 below. The remaining terms arise generically in this dynamic environment, but
for reasons we explain below, we rule them out by assumption. The right hand side is an almost
standard accounting of the fiscal externalities due to changes in household actions. However, when
the government sets policy in the present, they average over climate states 𝜔 in the future. We
make an additional assumption to additionally rule out any covariance between 𝜇(𝜔) (the shadow
cost of public funds) and future climate states 𝑃𝑖(𝜔).

Assumptions

A1 Cov𝜔(𝜇(𝜔), 𝐿𝑖(𝜔)) = 0; dynamic-flood risk is small relative to the economy.

A2 Cov𝜔(𝑢̄′(𝜔), 𝜀𝑖𝜔) = 0; individual idiosyncratic risk is orthogonal to aggregate climate risk.

A3 𝔼𝜔[ ∑𝑖 𝑞∗
𝑖 (𝑢′

𝑖(𝜔) − 𝑢̄′(𝜔))] = 0; no selection on average.

A4 Cov𝜔( ̄𝑃 (𝜔),Cov𝑖(𝑞∗
𝑖 , 𝑢′

𝑖(𝜔))) = 0; no additional selection in bad aggregate climate states.

A5 Cov𝑖(𝑎𝑖, 𝔼𝜔[𝑢′
𝑖(𝜔)]) = 0; rules out redistribution on predictable individual risk.
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Assumption A1 assumes that the shadow cost of public funds is orthogonal to the aggregate
flood-risk scenario. To the extent flood risk is a ‘small’ component of the economy, this is justified.
Estimating this covariance would require that we take a view on how differentially distortionary the
marginal dollar of taxation is in 2070 under different climate scenarios.

Assumption A2 assumes that the individual idiosyncratic deviations 𝜀𝑖𝜔 do not systematically
covary with the aggregate climate state, and in particular the cost of raising a dollar of (lump-sum)
tax in climate state 𝜔, which is 𝑢̄′(𝜔) . By construction, 𝜀𝑖𝜔 is zero in expectation over climate states
𝜔. Hence, our assumption is that individual deviation from their predictable risk and the average
climate risk is not correlated with aggregate climate shock. Empirically, this is true: the correlation
is approximately 0.03 to 0.09 depending on the utility function specification.3

Assumption A3 assumes that there is no selection into insurance on average. The premiums
are risk-rated and personally priced, so there is no externality from selection, were it to exist. Se-
lection could be generated by individual constraints or (e.g., risk preferences that change their
demand for insurance, over and above risk differences, which are already priced in. Critically, this
assumption, while supported by the literature (e.g. Wagner (2022)) would only strengthen the case
for subsidies if selection were adverse. A subsidy would incentivize insurance take-up amongst
those with particularly high marginal utility, and therefore be even more desirable for the planner
than if take-up was uncorrelated with marginal utility.

Assumption A4 rules out state-specific selection. The covariance term Cov𝑖(𝑞𝑖, 𝑢′
𝑖(𝜔)) mea-

sures the degree of selection: do those who choose insurance have different risk levels and
therefore marginal utility? We assume that this selection pattern does not covary with the level
of aggregate risk in the future climate scenario ̄𝑃 (𝜔).

Assumption A5 rules out redistribution based on predictable flood risk. Since we wish to study
the insurance value of a premium subsidy, we exclude transfers based on a known risk type. We
explore the redistributive implications of flood insurance subsidies quantitatively in Section 9.

Under these assumptions, and further restricting insurance to be a binary choice, and assuming
that mitigation and location choices only change (smoothly) among the insured (Assumptions A6-
A7)4, we arrive at the simplified optimality condition that we will estimate.

Proposition 2 (Optimal Subsidy: Simplified). Under assumptions A1-A7, the optimal premium
subsidy 𝑠 solves:

(1 − 𝑠) ∑
𝑖
Cov𝜔(𝑢′

𝑖, 𝜀𝑖𝜔)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
idiosyncratic reclassification ins.

+ 𝔼𝜔[𝜇(𝜔) ∑
𝑖

𝑓 ̄𝑃𝑖 ℰ𝑞
𝑖 ]

⏟⏟⏟⏟⏟⏟⏟⏟⏟
FEMA savings

=

− 𝔼𝜔[𝜇(𝜔)( ∑
𝑖

𝑠 ̄𝑃𝑖 ℰ𝑞
𝑖

⏟⏟⏟⏟⏟
coverage FE

+ ∑
𝑖

𝑠 𝔼𝜔[𝜕𝑃𝑖
𝜕𝑚 ] ℰ𝑚

𝑖
⏟⏟⏟⏟⏟⏟⏟

mitigation FE

+ ∑
𝑖

𝑠 𝔼𝜔[𝜕𝑃𝑖
𝜕𝑥 ] ℰ𝑥

𝑖
⏟⏟⏟⏟⏟⏟⏟

location FE

)].

3See Appendix A.1 for more details.
4See the proof of Proposition 2 for formal definitions.
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The right-hand side measures all the costs from an expanded subsidy: the fiscal externalities
from more insurance, less mitigation, and riskier location choices. The fiscal externalities are
proportional to 𝑠 because the subsidy is exactly the quantity the individual doesn’t consider when
making their choices that the planner still has to pay . For example, when an individual chooses
their level of mitigation, they trade off the private costs and benefits; they do not account for the
reduced subsidy the government will pay if mitigation reduces their premium, nor the expected
reduced FEMA costs because of a risk reduction. The logic is similar for location choice to the
extent that risk changes with location. When choosing to insure or not, the household trades off
the benefits of risk protection against the premium net of the subsidy, but not the cost of the subsidy
itself, nor the ex post FEMA assistance should they go uninsured.

The left-hand side measures all the benefits of an expanded subsidy. The second term is the
FEMA-cost saving from increased insurance. Although it is a fiscal saving, not an risk-smoothing
gain, it is the primary benefit of expanded subsidies. The first term is the value of insurance against
idiosyncratic (reclassification) risk. It is the continuous analogue of the difference in marginal utili-
ties seen in the typical binary-outcome model as Example 1 shows.

Example 1. Consider a two-state example with 𝜔 ∈ {𝐵, 𝐺} (bad and good climate scenarios,
probabilities 1−𝜋 and 𝜋). Idiosyncratic risk is high in B and low in G: 𝜀𝐵 = 𝜋Δ𝜀, 𝜀𝐺 = −(1−𝜋)Δ𝜀,
so 𝔼𝜔[𝜀𝜔] = 0 and 𝜀𝐵 − 𝜀𝐺 = Δ𝜀 > 0. Fix aggregate and person-specific risk. The idiosyncratic
insurance on the left-hand side of the condition for optimal 𝑠∗ is proportional to the marginal utility
difference:

(1 − 𝑠)Cov𝜔(𝑢′, 𝑞∗𝜀𝜔) = (1 − 𝑠)𝑞∗ (𝑢′𝐵 − 𝑢′𝐺

Δ𝜀 )Var𝜔(𝜀𝜔).

In sum, we have derived a formula for the optimal subsidy with dynamic reclassification risk
(both aggregate and idiosyncratic) and multiple fiscal spillovers that nests the standard insurance-
moral hazard tradeoff. To solve the formula in Proposition 2, we need to estimate five numbers: the
value of insurance against idiosyncratic reclassification risk for flood; the change in ex post FEMA
spending as insurance prices, and therefore take-up, change; the elasticity of flood-insurance de-
mand with respect to the price; the elasticity of mitigation with respect to an insurance subsidy
change; and the elasticity of movement from risky to less risky places as insurance subsidies
changes. In the next five sections, we estimate each of these quantities.

4 Spillovers to Ex Post Disaster Aid

Data on presidentially declared (flood) disasters (PDDs) comes from FEMA’s Disaster Declaration
Summaries. This dataset provides the official record for all federally declared disasters, detailing
the incident type, date, and geographic scope. For our analysis, we restrict to the counties where
assistance under the Individuals and Households Program (IHP) was authorized.5

5This should cover the vast majority of significant flooding–the cutoff for public assistance is $4.72 in damage per
capita which is low compared to the mean damage of thousands of dollars in our sample.
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To estimate disaster-specific damages, we use the National Oceanic and Atmospheric Admin-
istration (NOAA) Storm Events Database. We extract all events classified as floods and aggregate
the total estimated property damage for each affected county. These county-level damage figures
are then matched to a PDD by county and date, with a one-week buffer.

Data on FEMA’s Individuals and Households Program (IHP), the National Flood Insurance Pro-
gram (NFIP) policies and claims, and the Hazard Mitigation Grant Program (HMGP) come from the
OpenFEMA data portal. Similarly, disaster loan information for the Small Business Administration
(SBA) comes from data.sba.gov. We process these raw datasets to calculate each program’s total
spending by declared disaster and county.

Data on mortgage performance for Freddie Mac and Fannie Mae come from the GSEs public
data releases. We use their quarterly loan-level performance data to assess costs incurred from de-
faulted mortgages. We measure fiscal costs in the year after each declared disaster. Freddie Mac
directly provides an estimate of actual net costs due to foreclosure. For Fannie Mae, we calculate
the total loss for each defaulted loan by summing the unpaid principal balance, delinquent interest,
and various costs associated with foreclosure and property maintenance, and then subtracting any
proceeds from the sale of the property or other credit enhancements.

We use demographic and housing data from the U.S. Census Bureau’s American Community
Survey (ACS). Additionally, the Census Bureau provides the geographic concordance tables used
to map county and state FIPS codes to their respective names and to link ZIP codes to counties.

Our datasets cover different time periods. The most restrictive is the NFIP Policies-in-Force
dataset, which begins in 2009. As such, we restrict our analysis to the period 2010 onward. How-
ever, for the purposes of certain backward-looking variables, such as time since a recent flood, we
use data on disaster declarations and IHP spending going back to 2002.

4.1 Summary Statistics for Ex Post Aid

Table 1 presents the sample summary statistics, where each county-year is weighted by flood
damage in that county/year. The average dollar of flood damage occurs in a county of 1 million
people, and has county wide property damages of $4.7 billion. About one in five households have
NFIP insurance; the damage done to a house by flooding averages $32,000. On average, across
all houses in the county, NFIP payouts are $3440. Given that only 18% of houses are insured, if
insured houses are representative, this suggests that NFIP offsets 60% of the costs of flooding
for insured houses; this is likely a lower bound, however, as those houses that buy insurance are
likely to be the most valuable.

Table 1 about here

We also find that there are sizable uninsured public expenditures associated with flooding. Dis-
aster insurance per house is $733, while on average another $704 is provided in SBA loans, and
$147 is provided in HMGP. Given that SBA loans have a government cost of 13c per dollar (CRS),
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we estimate that the total ex post government spending averages $947 on a flood-weighted basis.
Adding this to the $3440 in NFIP payouts, we find ex ante and ex post payments amount to 12% of
total flood costs – meaning that about 88% of the costs of flood damage in America are uninsured
either ex ante or ex post.

4.2 Methods and Results

We begin by estimating a two-way fixed effects model of the effect of flood insurance on ex post
flood recovery spending:

ExPost Spending𝑐,𝑓 = 𝛼𝑐 + 𝛾𝑡 + NFIP Coverage𝑐,𝑓 + 𝑓 (Flood Damage𝑐,𝑓) + 𝜖 (1)

where ExPost Spending𝑐,𝑓 is ex post spending per house in county 𝑐 for flood 𝑓 that occurs at
time 𝑡, Coverage𝑐,𝑡−2𝑚 is NFIP coverage measured two months before the start of the flood event,
Flood Damage𝑐,𝑓 measures flood damage per house in county 𝑐 for flood event 𝑓 , 𝛼𝑐 are county
fixed effects, and 𝛾𝑡 are calendar-year fixed effects. We control for flood damage by binning6 and
estimating a distinct quadratic function within each bin. All variables are measured per house in
the county.

As noted in the introduction, such a model faces two challenges. The first is that NFIP coverage
and ex post spending are both related to flood risk. Moreover, mitigation activities that affect the
damage from a flood are related to NFIP coverage and past floods. Hence, we flexibly control
for flood damage—insured and uninsured—so that we are really comparing two otherwise similar
floods that hit counties at times in which NFIP coverage differs.

Table 2 shows our OLS estimates for the impact of flood insurance on ex post spending. We
estimate that insuring one more house per 100 would lead to a $175 reduction in ex post spending,
which is highly significant, but is quite small relative to the total costs imposed by flooding. We
estimate that 8% of houses make a FEMA claim. Assuming that these are the uninsured houses,
and assuming that they also benefit from other spending (e.g., SBA loans), then this amounts to
roughly $2,200 per house. If the average damaged house gets this assistance, this is only one-
sixteenth of total damages.

The second empirical challenge is that it is possible that our OLS estimate is biased by factors
that jointly determine insurance coverage and ex post spending. Places with more motivated own-
ers might both buy insurance and more aggressively seek aid (biasing our estimate downward),
while counties that can reliably secure recovery funds—perhaps for political reasons—may insure
less (biasing the estimate upward). County fixed effects absorb time-invariant differences but not
shifts (e.g., changes in political representation that reduce insurance demand by promising more
aid). To address this, we implement an instrumental variables strategy, following Gallagher (2014).
In particular, we exploit the short-term rise in flood insurance coverage in a county following floods
in neighboring counties.

6Bins cutoffs at 1, 10, 100, 1,000, 10,000, 100,000, and 1,000,000 dollars of flood damage per house in the county.
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We begin by replicating the impact of flood timing in neighboring counties on demand for flood
insurance, in Figure 1. This graph shows the results from regressing NFIP coverage per house in
county 𝑐 on the time since a flood in the county 𝑐’s closest neighbor, controlling for time since a
flood in county 𝑐. We find that flood insurance demand picks up and remains elevated for the five
years after a neighboring flood, rising by roughly 3 percentage points off a (weighted) mean of 18
percentage points, or approximately 17%. These estimates are very similar to the effects found
by Gallagher (2014)), whose Figure 8 estimates a 3.1 percentage point increase in neighboring
counties.7

Figure 1 about here

Given this relationship, it suggests a natural instrument for flood insurance demand: whether
there was a flood in a neighboring county in the last five years. The specific timing of past floods
in neighboring counties should be independent of insurance demand in own county, other than
through its operation as a taste shifter for insurance demand.

Figure 2 shows the reduced-form relationship between time since neighboring flood and own
ex post recovery spending. This figure mirrors Figure 1: there is no pre-trend, and in the roughly
five years after a neighbor’s flood, there is reduced spending on ex post recovery.

Figure 2 about here

The second column of Table 2 shows the results of our regression using neighbor-flood timing
as an instrument. Doing so, we obtain a comparable estimate of $-203, which is statistically sig-
nificant at the 1% level. As we decompose in the Appendix Tables A2 - A6, the majority of this –
$150 – comes from FEMA’s IHP. To benchmark this, FEMA payouts are capped at $85,000, but
the average uninsured household receives approximately $14,500 in assistance relative to flood
damage of $135,000. Hence, if people who take up NFIP coverage would otherwise cost FEMA
$14,500, this rationalizes a FEMA saving of $150 per household as coverage increases by 1%.

And so if an extra percent of insurance coverage reduced FEMA payouts from this maximum to
zero for these marginals, that would imply a $850 reduction in FEMA spending per total household.
Similarly the maximal saving from SBA loans would be $650 per house8 Accounting for these
primary cost drivers caps the spillover effect of a percentage increase in NFIP coverage at about
$1, 500 per house. Our effect is 13.5% of this upper bound.

Table 2 about here

Given these results, the only identification concern would be that there is an omitted variable
which is jointly correlated with neighbor flooding, own insurance demand, and (in the opposite way)

7Note, Gallagher (2014) uses data from 1980–2007, earlier than our sample, and most analyses are done at the
NFIP community, not county, level. His definition of neighbor is also based on media markets, while ours is based
on geographic proximity of the counties’ centroids. Gallagher also uses information on floods in own and neighboring
counties; our results are robust to using both as well.

8The maximum loan size is $500,000, which costs the SBA (in terms of interest rate subsidy and expected default)
13% × $500, 000 = $65, 000 per marginal household, or at most $650 per total household for a 1% coverage change.

15



own ex post flood spending. While this seems unlikely, we can go further to rule out underlying
trends that drive this relationship by including a linear trend in time since flood in neighboring
county 𝑐. We include these linear time-since-flood controls in Appendix Table A1, and our findings
are robust, with an OLS estimate of -$175 and an IV of -$221.

In Appendix Tables A2 - A6, we decompose the spending impacts into the different programs
included in our total. The largest and most significant effects come from FEMA’s IHP program, with
smaller and less precisely estimated fiscal savings coming from the HMGP and SBA loan programs.
Fiscal savings from reduced foreclosures in FannieMae and FreddieMac are negligible. We further
show in the Appendix Table A7 that our primary estimates are robust to a wide variety of different
ways to control for damage.

5 Demand Estimation

We use a policy-level panel of National Flood Insurance Program (NFIP) policies obtained via a
Freedom of Information Act (FOIA) request. Relative to the public OpenFEMA release, our data
include the full risk-based premium under Risk Rating 2.0 (RR2.0) for each policy and year, in
addition to the billed premium. We restrict to policies priced under RR2.0 and construct a panel
by matching policies on stable property identifiers, including geographic coordinates (latitude and
longitude), census tract, flood map attributes, construction year, and building replacement cost.

Let𝑃𝑖,𝑡 denote the billed premium for policy 𝑖 in year 𝑡 and𝑅𝑖,𝑡 the full risk–based premium under
RR2.0 applicable for year 𝑡. By regulation, NFIP premium increases cannot exceed 18% per year.
As such, the renewal premium offered for the next period is 𝑃 offer

𝑖,𝑡+1 = min{(1 + 0.18) 𝑃𝑖,𝑡, 𝑅𝑖,𝑡+1}.
Define the relative price (subsidy ratio) as ̃𝑃𝑖,𝑡 ≡ 𝑃 offer

𝑖,𝑡+1
𝑅𝑖,𝑡+1

.
Let 𝑦𝑖,𝑡+1 ∈ {0, 1} indicate whether policy 𝑖 renews into year 𝑡+1. We estimate the following

linear probability model with contract fixed effects:

𝑦𝑖,𝑡+1 = 𝛽 ln ̃𝑃𝑖,𝑡 + 𝜇𝑖 + 𝜀𝑖,𝑡+1, (2)

where 𝜇𝑖 are policy (contract) fixed effects, absorbing all time-invariant heterogeneity. Standard
errors are clustered at the policy level. Our identification comes from within-policy variation in the
premium due to RR2.0.

The coefficient 𝛽 is a semi-elasticity; the change in renewal probability with respect to a per-
centage change in renewal price, holding the full-risk premium constant:

𝜕 Pr(𝑦𝑖,𝑡+1 = 1)
𝜕 ln𝑃 offer

𝑖,𝑡+1
∣
𝑅𝑖,𝑡+1

= 𝛽.

We additionally estimate two versions of (2) with additional heterogeneity terms. One with
an interaction between the semi-elasticity and subsidy level, one with an interaction between the
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semi-elasticity and an indicator for a house being in a SFHA. The results are in Table 3.

Table 3 about here

We estimate a semi-elasticity of demand of -0.32. This is roughly in the middle of the range
estimated by the literature. Less elastic estimates include -0.19 to -0.28 (Lee (2024)) and -0.25
(Wagner (2022)); more elastic estimates are as high as -0.75 (Landry and Jahan-Parvar (2011)).
When allowing for heterogeneity, we find an elasticity that increases (in absolute magnitude) as
the subsidy gets smaller. That is, demand is more elastic for the first dollar of subsidy than the last.
This result suggests that at least some small subsidy is likely to be optimal as it delivers particularly
large FEMA savings. Moreover, we find lower elasticities (approximately -0.25) in SFHA relative to
non-SFHA. This is likely due to the mandate that exists, but is imperfectly enforced, for households
in the SFHA to buy and hold flood insurance for their mortgage to be guaranteed by Freddie Mac
or Fannie Mae.

Additionally, in Appendix A.4 to complement the within-house estimates in this section, we
analyze differences in demand responses across counties. Specifically, we compare counties dif-
ferentially exposed to RR2.0 (in the same way as Section 8) and find, in an event study framework,
an implied elasticity of -0.2, comparable to Lee (2024).

6 Reclassification Risk

The NFIP’s transition to Risk Rating 2.0 (RR2.0) ties premiums directly to risk, present and future.
While climate models broadly agree on the aggregate trend of increased future flood risk, they
often produce divergent predictions for specific localities, even under the same aggregate warming
scenario (Gori et al. (2022)). This creates two distinct forms of uncertainty for households. The
first is aggregate uncertainty over the average increase in future risk. The second, which is the
focus of this section, is idiosyncratic reclassification risk: the uncertainty a household faces about
its premium relative to the average, driven by model disagreement over future local flood patterns.

While aggregate risk is largely unavoidable, this idiosyncratic risk is, in principle, diversifiable
across the nation. Historically, the NFIP’s subsidized, non-actuarial premiums implicitly socialized
this risk. By moving to property-level actuarial rates, RR2.0 undoes this implicit insurance. Our
goal is to quantify the magnitude of this newly exposed risk and estimate households’ willingness
to pay to insure against it.

6.1 Data on Future Flood Risk

To understand the uncertainty in future flood risk, we utilize synthetic flood data as developed by
Gori et al. (2022). That paper generates a set of weather event ’seeds’ that, under present climate
conditions, generate a number of eventual climatic events that is well calibrated to historical flood
frequency. Gori et al. (2022) then takes those same seed events, and runs them through eight

17



different models from the Coupled Model Intercomparison Project (CMIP) of the climate as it is
projected to be in 2070. To ensure a consistent basis for comparison, each climate model is
applied to the same aggregate climate scenario: SSP5-8.9 This produces, for each model and
for each location, a variable number of flood events. We record, in these synthetic future climate
events, the risk of varying levels of precipitation, storm surge and simultaneous precipitation and
surge risk.

Since NFIP policy locations do not perfectly align with the climate data grid, we assign hazard
values to each policy based on Inverse Distance Weighting (IDW) using the closest three points
on the climate data grid. For each grid point, we use three key hazard metrics: 100-year return
period rainfall level (in millimeters); 100-year return period storm surge water level (in millimeters);
the annual probability of a joint-100-year (rain and surge) flood event. Panels A and B of Table 4
summarize the pre-RR2.0 and RR2.0 premiums, and the current hazard metrics.

Mapping Premiums to Risk Factors. We have data on future hazard factors, but not directly
on future premiums. To project future premiums, we generate a mapping from hazard factors to
premiums using current data, and then use that mapping to predict future premiums given future
hazards. We estimate, for property i’s RR2.0 full-risk premium,

Full Risk Premium𝑖 = 𝛽(Rain, Surge, Joint)𝑖 + 𝛾(Building Controls)𝑖 + 𝜖𝑖

where we control for a rich vector of granular property characteristics, including building re-
placement cost, elevation, foundation type, number of floors, construction date, and occupancy
type. The estimates for 𝛽 are in Table A9. An extra millimetre of rainfall increases premiums by
$3.93; an extra millimeter of storm surge increases premiums by $1.07; an increase in the proba-
bility of a joint storm and rainfall event by 1% increases expected premiums by $367.63.

6.2 Simulating Future Premiums

No discounting. All amounts are in constant 2023 dollars. That is, our future premiums are cal-
culated using 2070 levels of risk but with 2023 risk-to-premium factors. We do not apply any dis-
counting to the 2070 premiums because premiums scale with building value and, as such, increase
with house prices. Long-run real house-price growth averages about 1–2% per year (Jordà et al.,
2019), close to the 2.0% real social discount rate recommended for regulatory analysis (omb, 2023).
These approximately offset. Regardless, as we show in Appendix A.2, our policy conclusions are
not sensitive to these discounting assumptions. Intuitively, this is because reclassification risk in-
surance value is highest for the first dollar of subsidy and then declines approximately quadratically
after that. In the range of subsidies that we are typically finding as optimal - 50 to 60% or so - the
marginal impact from a bit more insurance against reclassification risk has decayed to be very

9SSP5-8.5 is at the higher end of the ensemble of climate scenarios considered by the Intergovernmental Panel
on Climate Change, assumes high economic growth and energy demand and low mitigation, and 8.5 𝑊/𝑚2 radiative
forcing by 2100. The best estimate of the warming implied by SS5-8.5 is about 4.4 degrees Celsius relative to 1850-
1900(IPCC (2021).
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small, regardless of additional discounting.
Gori et al. (2022) simulate 2070 rain, surge, and joint-hazard measures under eight general

circulation models (GCMs). For each policy and each GCM, we replace historical hazard values
with the projected 2070 values for that GCM, using inverse distance weighting (IDW) from the three
nearest grid points; all other property characteristics (replacement cost, elevation, etc.) are held
fixed. We then use our estimated pricing regression (in 2023 dollars) to predict 2070 premiums.

Our results are summarized in Table 4. Panel A measures premiums prior to RR2.0, which are
on average $913. Panel B shows the effect of RR2.0 on premiums (they rise to $1, 772 on average)
and the risk factors estimated for each property using current hazard levels. Our regression above,
the results of which are in Table A9, is estimated on the premiums and risk factors in Panel B. Panel
C then uses simulated future climate hazards fromGori et al. (2022) and themodel trained on Panel
B to project future premiums across eight climate scenarios. On average across the scenarios,
rainfall hazard increases by a factor of 4.69, storm-flooding risk by 45% and joint hazard by more
than a multiple of 17. This leads to an average premium of $6, 382 in 2070 (denominated in 2023
dollars).

Table 4 about here

However, future premium uncertainty is substantial even under common aggregate warming
assumptions. The average household faces considerable uncertainty around this future premium,
with a standard deviation of $3, 317 across the eight climate outcomes (panel C). Future premium
uncertainty combines (i) idiosyncratic, diversifiable component 𝜀𝑖𝜔 and (ii) aggregate scenario risk.
We decompose these in panel D. The idiosyncratic component—diversifiable within a scenario—is
large: removing scenario and household fixed effects still leaves a standard deviation of $1,554.
This is the uncertainty we can insure through a premium subsidy. The uncertainty across climate
scenarios within a household is even more acute but not insurable in the cross-section through
premium subsidies.

To further illustrate the degree of uncertainty in the idiosyncratic, diversifiable-across-households,
risk, Figure 3 plots the percentage premium change by 2070 for a random policy sample under two
of the least-correlated models (MPI on the horizontal axis; IPSL on the vertical). The dashed line
represents pure aggregate risk (uniform scaling of premiums). Deviations from this line reflect di-
versifiable idiosyncratic reclassification risk. The degree to which some households are above the
diagonal and others below represents the diversifiability of premium risk; in one scenario house
A is high risk and house B is low, in the other scenario, the inverse. Visually, there is substantial
diversifiable risk. We next turn to quantifying the benefits of insuring that diversifiable risk.

Figure 3 about here
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6.3 Reclassification Risk Results

We measure the reduction in insurance against reclassification risk induced by RR2.0. Our es-
timates imply that RR2.0 removed a level subsidy of approximately 𝑠 = 0.5.10 Let 𝑃𝑖(𝑠) denote
the future premium distribution for household 𝑖 under policy 𝑠, and let CE𝑖(⋅) denote the certainty
equivalent. RR2.0 corresponds to CE𝑖(𝑃𝑖(0)); undoing RR2.0 corresponds to CE𝑖(𝑃𝑖(0.5)). The
raw value of undoing RR2.0 for household 𝑖 is

CE𝑖(𝑃𝑖(0)) − CE𝑖(𝑃𝑖(0.5)) .

To isolate the pure insurance value (net of mechanical transfers), we define the change in the mean
premium

𝑐𝑖 ≡ 𝔼𝜔[𝑃𝑖(0) − 𝑃𝑖(0.5)] ,

and compute
CE𝑖(𝑃𝑖(0) − 𝑐𝑖) − CE𝑖(𝑃𝑖(0.5))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

pure insurance value of undoing RR2.0

.

We assume CARA utility, 𝑢(𝑐) = − exp(−𝛾𝑐), and report results for multiple 𝛾.11

Table 5 about here

Table 5 indicates that RR2.0 exposed households to substantial reclassification risk. Under our
central risk-aversion parameter 𝛾 = 5×10−4, the level shift reduces insurance value by $64.5, about
7% of the subsidized pre-RR2.0 premium, 3.6% of the RR2.0 premium and 1% of the projected
future premium.

7 Moral Hazard: Mitigation

Flood risk mitigation encompasses a range of strategies aimed at reducing potential damage. How-
ever, the most effective and commonly incentivized measure is elevating a structure above ex-
pected flood levels. This involves raising the lowest floor, typically via pilings, piers, or extended
foundations. While elevation can substantially lower expected damages (e.g., by 30–70% depend-
ing on height and flood depth (U.S. Army Corps of Engineers (2021))), it is often prohibitively expen-
sive (estimates range from $30,000 to $90,000 for a typical house (Congressional Budget Office
(2017))). This means that when flood insurance is subsidized, households might not choose to
voluntarily elevate their house. On the other hand, elevation might be incentivized if premiums are
adjusted to fully reflect risk, and if premium discounts are offered commensurate with the reduction
in damage.

10Per Table 4, the mean pre-RR2.0 premium is $913, the mean post-RR2.0 premium is $1,772.
11We use 𝛾 = 5 × 10−5 as a lower bound as estimated by Cohen and Einav (2007), and 𝛾 = 5 × 10−4 as our primary

estimate. Note, this still errs conservatively: Sydnor (2010) and Barseghyan et al. (2011) estimate 𝛾 = 5 × 10−3, an
order of magnitude larger.
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In this section, we quantify the responsiveness of elevation decisions to insurance price changes.
To tackle this difficult empirical challenge, we turn to data from the state of Florida, which requires
data on mitigation efforts. While not representative of the US, Florida is more representative of
the most flood-prone areas in the country: the average full-risk premium is $2, 996 relative to the
national average of $1, 941.

7.1 Data

Since 2017, all elevation certificates (ECs) in Florida have been required to be submitted to the
Florida Division of Emergency Management, providing a comprehensive dataset for analyzing mit-
igation trends. These certificates adhere to a standardized FEMA format, capturing critical details
such as the structure’s location (in particular, its flood zone designation), base flood elevation,
actual lowest floor elevation, foundation type (e.g., slab, crawlspace, or elevated), presence of
enclosures or vents below the elevated floor and so on. We collect all ECs filed Florida Division
of Emergency Management (2025) and extract the relevant textual data. In addition, we use our
RR2.0 pricing data to calculate, by flood zone, the RR2.0-induced price changes.

7.2 Policy Change

Risk Rating 2.0 affected incentives to elevate new buildings distinctly in high and low flood risk
areas. Special Flood Hazard Areas (SFHAs) are high-risk flood zones defined by FEMA as areas
with a 1% annual chance of flooding. Flood insurance is mandatory for properties with federally-
backed mortgages inside the SFHA. New buildings in SFHAs are subject to elevation mandates to
meet or exceed the Base Flood Elevation (BFE) under NFIP minimum standards. This requirement
was unchanged by RR2.0. As such, we do not expect substantial responsiveness of elevation to
flood insurance price changes inside the SFHA since elevation is already mandated, although
imperfectly enforced,12 by building codes.

In contrast, outside of the SFHA there is no such elevation mandate. Areas outside of SFHA
include moderate risk (1-in-100 to 1-in-500 year flood risk), and low risk (less than 1-in-500 year
flood risk) properties. Because there is no mandate, elevation outside of the SFHAs is entirely
voluntary and therefore likely more responsive to insurance price incentives. For these reasons,
identifying the responsiveness of elevation to insurance price is best done by comparing properties
both inside or both outside the SFHA; comparisons across are less informative.

7.3 Analysis

We test the responsiveness of elevation decisions to insurance price changes, separately inside
and outside of the SFHA.

12An audit by Mathis and Nicholson (2006) finds 89% compliance with the SFHA elevation requirements.
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Inside the SFHA, we compare very high risk properties to the high risk. All properties in SFHAs
are, by definition, exposed to a greater than 1% annual chance of flood. The very high risk proper-
ties, located near the coast, are additionally exposed to high velocity wave flooding; the high risk
are not. The average full-risk premium for the very high risk is $4,478; for the high risk $2,288.
The price changes under RR2.0 were correspondingly sharper: the mean premium differences
pre- and post-RR2.0 were $2,142 (very high risk) versus $1,202 (high risk). If the very high risk
have a greater elevation response to RR2.0 than the high risk, this would indicate that elevation is
responsive to price incentives even conditional on the stringent elevation requirements already in
place in SFHAs.

Outside the SFHA, we compare moderate risk to low risk properties. Moderate risk properties
saw their premiums increase under RR2.0 by $1,075, reaching an average full-risk premium of
$1,724. Low risk properties’ premiums increased by a smaller $702 to an average full-risk premium
of $1,312. We will infer the responsiveness of elevation decisions to insurance prices, when there
is no elevation mandate in the building codes, by comparing the changes in moderate-risk versus
low-risk properties.

We estimate the probability of a house 𝑖 in NFIP community 𝑗 and year 𝑡 elevating by 3 feet
or more relative to the base flood elevation (inside the SFHA) or local ground height (outside the
SFHA). We run the analyses separately inside and outside the SFHA. Our treatment variables are
being in the higher-risk flood zone (in the SFHA: very high risk; outside of the SFHA: moderate
risk). Specifically, we estimate:

Elevate𝑖𝑡 = 𝛽0 + ∑
𝑡≠2022

𝛽1,𝑡 Higher Risk Category𝑖 + 𝛾𝑡 + 𝛿𝑗 + 𝜖𝑖𝑡 (3)

We include fixed effects for year (𝛾𝑡) and for NFIP community (𝛿𝑗) to control for community-specific
mitigation incentives. The coefficients of interest are 𝛽1,𝑡, the effects at different time periods of
being in the very high (moderate) versus high (low) risk areas inside (outside) the SFHAs. The
coefficient estimates are displayed in Figure 4.

Figure 4 about here

We find that elevation responds to the removal of RR2.0 subsidies outside of SFHAs, but not
inside. The top panel of Figure 4 shows that, despite facing a price change almost twice as high,
very high risk properties did not change their elevation decisions relative to high risk properties.
Unfortunately, there are fairly strong pre-trends for this area, but if anything they further confirm the
fact that mitigation inside SFHAs didn’t respond positively to the policy change. As discussed, this
is likely due to existing and continuing SFHA-specific elevation requirements and building codes.

In contrast, outside of the SFHA, where elevation is voluntary, there is a 10% increase in ele-
vating by more than 3 feet in the moderate risk areas relative to the low-risk areas. The difference
in mean price increases was approximately $372, against a mean full-risk price of $1,518, indicat-
ing that an approximate price change of 25% yielded a 10% elevation increase. This implies an
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elasticity of approximately 0.4, calculated as:

Elasticity = % Δ in Elevation
% Δ in Price

= 10%
25% = 0.4

This elasticity, in combination with the returns to 3 feet of mitigation – a 40% reduction in ex-
pected risk – are the key inputs we use to calibrate the fiscal externality from under-mitigation due
to subsidies in Section 9.

8 Moral Hazard: Location

Subsidized flood insurance has long been criticized for dulling price signals and incentivizing exces-
sive construction in high-risk areas (Ben-Shahar and Logue (2016)). This is in addition to evidence
that when flood insurance becomes available for the first time in an area, this spurs development
(Peralta and Scott (2024)). By removing subsidies and exposing households to full-risk prices,
RR2.0 aims to reduce overdevelopment. In this section, we study population movements from
locations that experienced dramatic price increases under RR2.0 to those that experienced lesser
increases or even decreases.

8.1 Data

To measure population changes, we use quarterly data on the number of occupied residential
addresses at the census-tract level, provided by the U.S. Postal Service (USPS). This serves as
our primary outcome variable. We link this with NFIP data on pre- and post-RR2.0 premiums, also
aggregated to the tract level.

We compare census tracts whose median property experienced a price increase under the
NFIP to those that experienced a price decrease. Specifically, we define the indicator variable
MedianIncrease𝑐𝑡 to be equal to 1 if the median premium in tract 𝑐 at time 𝑡 increased under RR2.0
and 0 otherwise. These treated and control tracts have very similar prices before RR2.0, reflecting
the subsidies of the previous system; the median premium in treated census tracts was $929 while
in non-treated tracts it was $769. But these tracts received very different price shocks from RR2.0,
with premiums rising by $1063, to $1992, in treated tracts, but only by $152, to $921, in non-treated
tracts.

8.2 Empirical Strategy

Wecompare occupied residential addresses in census tract 𝑐𝑡measured in quarter 𝑞, OccupiedResidential𝑐𝑡,𝑞,
across tracts that on average experienced a price increase versus a decrease under RR2.0. Specif-
ically, we estimate

log(OccupiedResidential𝑐𝑡,𝑞) = 𝛼𝑐𝑡+𝛾𝑞+ ∑
𝑞′≠Q1 2022

𝛽𝑞′(MedianIncrease𝑐𝑡×1{𝑞 = 𝑞′})+𝜀𝑐,𝑡,𝑞, (4)
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where 𝛼𝑐𝑡 are census–tract-by-time fixed effects, 𝛾𝑞 are quarter fixed effects. The coefficients of
interest are 𝛽𝑞′ , which capture the relative difference in occupied residences in the more- versus
less-exposed census tracts, normalized to zero in Q1 2022. Figure 5 plots the estimated 𝛽𝑞′ .

Figure 5 about here

Figure 5 shows a net movement of about 0.75% of the population from census tracts treated with
a large price increase under RR2.0 to those with smaller (or negative) price changes. This move-
ment begins in 2023 (the full rollout of RR2.0 concluded at the end of 2022) and rises gradually,
appearing to stabilize by mid-2025.

Translated into dollars, RR2.0 induces 0.75% of the population to move from locations with an
average risk of $1,992 to locations with an average risk of $921. We use this moral hazard response
as an input to our optimal policy analysis in Section 9.

These effects are precisely estimated but relatively small. For reference, estimates of out-
migration impacts of actual disasters range from about 1.5% for severe disasters (Boustan et al.,
2020), to roughly 7% following Hurricane Maria (Aron-Dine, 2025), to 12% after Hurricane Katrina
(Deryugina et al., 2018).

9 Optimal Policy

In this section, we calibrate a discrete approximation of the formula in Proposition 2. We use this
calibration to evaluate the efficiency of a marginal subsidy reduction starting either at the pre-RR2.0
prices or at the full-risk post-RR2.0 prices.

Throughout, we assume that household choices are discrete. Specifically, we assume that
insurance fully covers all losses and households either purchase or go uninsured; the mitigation
margin we consider is whether to elevate a new house or not; the location choice is binarized to
the household choosing between a high-risk or low-risk location. We keep the choice of the semi-
elasticity of demand ℰ𝑞 and the average flood insurance premium (i.e. expected risk) amongst the
marginals ̄𝑃 general. We derive optimal subsidy rates for many pairs of values of (ℰ, ̄𝑃 ).

9.1 FEMA Savings Calibration

The FEMA savings term is equal to ∑𝑖 𝑓𝑃𝑖ℰ𝑞
𝑖 . We need to estimate the spillover from a lack of

insurance to increased FEMA spending 𝑓 , and the elasticity of insurance demand with respect
to price ℰ𝑞

𝑖 . Since, additionally, we assume a homogeneous elasticity and FEMA spillover across
people, we need to estimate ΔFEMA(𝑠) = 𝑓ℰ𝑞 ̄𝑃 .

To calibrate the FEMA spillover, we use our estimate from Section III that measures the change
in FEMA spending with respect to coverage increases conditional on a flood. The term in the
equation is unconditional. Hence, we need to estimate the probability of a flood. We take the
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expected damage per house given a flood to be 𝐿𝑓 = $31,921 (see Table 1). Under actuarial
fairness, an average premium ̄𝑃 implies a flood probability 𝑝𝑓 = ̄𝑃/𝐿𝑓 each year.

Therefore, the change in unconditional expected FEMA spending per house for a 1 percentage
point (0.01) increase in coverage is 𝛽uncond = 𝛽cond ⋅ 𝑝𝑓 = (−$203) ⋅ 𝑃

𝐿𝑓
. For a small ad valorem

subsidy 𝑠 that induces a (log) price change Δ ln ̃𝑃 ≃ −𝑠, coverage changes by Δ𝑞 ≃ ℰ𝑞 Δ ln ̃𝑃 .
Hence, the FEMA saving per house-year from a small subsidy 𝑠 is

ΔFEMA(𝑠) = ( − 𝛽cond)
̄𝑃

𝐿𝑓
⋅ 100 ⋅ ℰ𝑞 ⋅ Δ ln ̃𝑃 .

For example, plugging in Δ ln ̃𝑃 = 0.01, 𝐿𝑓 = 31,921, 𝑃 = $1,500, and |ℰ𝑞| = 0.32, yields
ΔFEMA(0.01) ≈ $3.05 per house-year in response to a 1% price change.

9.2 Insurance Against Reclassification Risk Calibration

We directly calculate theWTP for a 1% reduction in log prices similarly to Section 6. That is, starting
at a given 𝑠 by 𝑊𝑇 𝑃 (𝑠) = 𝐶𝐸( ̃𝑃 (𝑠 + Δ𝑠)) − 𝐶𝐸( ̃𝑃 (𝑠)) where Δ𝑠 is the subsidy change induced
by a 1% log price change.

A 1% price reduction starting from 𝑠 = 0 provides insurance against reclassification risk worth
$1.04 per insured household. At 𝑠 = 0.5 this falls to $0.25, and at 𝑠 = 1 to zero. The difference is due
to the concavity of utility. A dollar of insurance against reclassification risk is more valuable when
the household is otherwise uninsured (𝑠 = 0) than when the household is already substantially
insured (𝑠 = 0.5), and is worth nothing when the household is fully insured 𝑠 = 1. As a back of
the envelope check, for normal risks and CARA utility, the WTP for insurance is quadratic in 𝑠,
consistent with the ≈ 4× drop between 𝑠 = 0 and 𝑠 = 0.5.

9.3 Coverage Fiscal Externality Calibration

The coverage term is equal to ∑𝑖 𝑠𝑃𝑖ℰ𝑞
𝑖 . On average, since we assume ℰ𝑞

𝑖 does not vary across
people, and scaled by the price change Δ ln ̃𝑃 , this becomes:

ΔCoverage FE = 𝑠 × ℰ𝑞 × ̄𝑃 × Δ ln ̃𝑃 .

At our central estimates of Δ ln ̃𝑃 = 0.01, ̄𝑃 = $1,500, and ℰ𝑞 = 0.32, this coverage externality
is zero at 𝑠 = 0, about $2.40 per house-year at 𝑠 = 1/2, and about $4.80 at 𝑠 = 1.

This term represents the fiscal externality in the form of higher subsidy outlays as households
change their insurance choices. Specifically, when households change their insurance choices
they do so trading off private costs – the post-subsidy premium – against private benefits. They
do not consider the public fiscal cost of selecting insurance, i.e. the subsidy itself.

For this reason, the marginal fiscal externality scales with 𝑠. This logic mirrors the Harberger’s
triangle for taxes, where the deadweight loss from a tax increases quadratically with the tax rate.
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The first dollar of tax has no deadweight loss (as households internalize the entire price), but this
grows rapidly due to greater distortions in behavior. Similarly, here, the fiscal externality for the
marginal household from subsidies scales with 𝑠, such that the total fiscal externality is quadratic
in 𝑠. This is the main reason we find an optimal subsidy level that is strictly between 0 and 1: the
FEMA benefits of a subsidy scale with 𝑠 while the coverage costs of a subsidy scale with 𝑠2.

9.4 Location Fiscal Externality Calibration

For the location term, we focus on the intensive-margin response among the insured. We therefore
set 𝑞 = 1 and 𝑓 = 0, since uninsured households neither pay nor respond to insurance premiums.
Under this restriction, the location component on the right-hand side reduces to 𝑠 ⋅ 𝔼[𝜕𝑃𝑖/𝜕𝑥] ⋅ ℰ𝑥.

When an insured person moves, the internalize the new post-subsidy insurance price but not
the subsidy itself. The subsidy they do not consider becomes the fiscal externality from their loca-
tion choice. Identically to the coverage term, the fiscal externality from the marginal mover is 0 at
𝑠 = 0 and then increases in 𝑠.

We calibrate 𝔼[𝜕𝑃𝑖/𝜕𝑥] from the observed change in expected annual loss among movers in
our RR2.0 analysis: movers go from tracts with average expected loss $1,992 to $921, so Δ𝑃 ≈
−$1,071. The location semi-elasticity ℰ𝑥 comes directly from the event-study: high-premium tracts
experience a net out-migration of−0.75% in response to a 98% premium increase (RR2.0 increased
high-risk location premiums from $1, 063 to $1, 992). Hence, ℰ𝑥 ≈ (−0.0075)/(+0.874) ≈ −0.0086.
This gives a location fiscal externality of

ΔLocation FE = 𝑠 × 0.0086 × Δ𝑃 × Δ ln ̃𝑃 .

For a 1% log price cut, the location fiscal externality is zero at 𝑠 = 0, $0.046 at 𝑠 = 1/2, and
𝑠 = $0.09 at 𝑠 = 1.

9.5 Mitigation Fiscal Externality Calibration

For the mitigation term we again focus on the intensive-margin response among the insured and
set 𝑞 = 1 and 𝑓 = 0, since uninsured households neither pay nor respond to insurance premiums.
Under this restriction, the right-hand-side contribution reduces to 𝑠⋅𝔼[𝜕𝑃𝑖/𝜕𝑚]⋅ℰ𝑚, so a small policy
change that induces a price change Δ ln ̃𝑃 contributes 𝑠 ⋅ 𝔼[𝜕𝑃𝑖/𝜕𝑚] ⋅ ℰ𝑚 ⋅ Δ ln ̃𝑃 per house-year.
Identically to the location and coverage fiscal externalities, the marginal mitigation fiscal externality
is zero at 𝑠 = 0 and then scales with 𝑠.

We define mitigation as elevating the structure by 3 feet. Our engineering (U.S. Army Corps of
Engineers (2021)) estimate is that elevating the structure by 3 feet causes a reduction in expected
loss (i.e. the full-risk premium) of 40%. We use our event-study (outside of the SFHA) to calibrate
the mitigation semi-elasticity. We take the difference in price increases from the moderate versus
the low risk relative to the initial moderate risk price: ($1075 − $702)/$649 = 57%. That is, relative
to the price change in the low risk areas, the moderate risk areas had a 57% increase in prices,
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and (per the event study) this caused an increase in mitigation of 10% (relative than the low risk
areas). Hence, ℰ𝑚 ≈ 0.10/0.57 = 0.18

In summary, 1% subsidy yields a mitigation fiscal externality of 𝑠 × 0.4 × 0.18 × ̄𝑃 × 0.01. =
0.00072 × 𝑠 × ̄𝑃 At ̄𝑃 = 1500, this is equal to $0.54 per affected house at 𝑠 = 0.5. But the mitigation
response to insurance price changes was only observed outside of the SFHA (which makes up
48% of total insured properties). Hence, in terms of per total houses per year, the mitigation fiscal
externality is 0.48 × 0.00072 × 𝑠 × ̄𝑃 , or only about $0.25 per house-year at 𝑠 = 1/2.

9.6 Optimal Subsidy

The optimal subsidy is the 𝑠∗ that solves the equation in Proposition 2. That condition is of the form

𝑊𝑇 𝑃 (𝑠)⏟
Reclass risk: quadratic in 𝑠

+ Δ𝐹𝐸𝑀𝐴(𝑠)⏟⏟⏟⏟⏟
constant in 𝑠

= ΔCoverage FE⏟⏟⏟⏟⏟⏟⏟
linear in 𝑠

+ ΔLocation FE⏟⏟⏟⏟⏟⏟⏟
linear in 𝑠

+ ΔMitigation FE⏟⏟⏟⏟⏟⏟⏟
linear in 𝑠

(5)

The right-hand side (costs) are zero at 𝑠 = 0 and increase linearly thereafter. The left-hand
side (benefits) are highest at 𝑠 = 0 and then either remain constant (FEMA) or decline quadratically
(WTP for insurance against reclassification risk). Although not guaranteed theoretically, for all
reasonable parameter choices the optimal 𝑠 is well-defined and interior to [0, 1].

We find the optimal 𝑠∗ for different combinations of ̄𝑃 and ℰ𝑞. The results are illustrated in 6.

Figure 6 about here

At our central estimates – ℰ𝑞 ≈ 0.32 and ̄𝑃 ≈ $1, 500 – the optimal subsidy is approximately
57%.

Even at demand elasticities substantially higher or lower, and at average premiums among the
insured starkly different from our central estimate, the optimal subsidy remains in the range 55% -
60% range. The relative insensitivity of 𝑠∗ is because the primary benefit (FEMA savings) and the
primary cost (ΔCoverage FE) are both linear in ̄𝑃 and in ̄ℰ𝑞. This is because both terms are similar
functions of the number of marginals (hence ℰ𝑞) and the their riskiness (hence ̄𝑃 ).

An implication of this is that our use of demand elasticities and premium data from the set of
people treated by RR2.0 is relatively innocuous. Even if the demand elasticity or riskiness of the
insured pool – i.e. their annual probability of flood or expected damage – were to change, this
analysis would produce a similar policy prescription.

9.6.1 Redistribution.

Our formula for the optimal subsidy considers only efficiency. We did not, in particular, worry about
the difference in wealth or income, and therefore in marginal utility, between those who are in higher
risk flood areas and those in lower risk areas. Because we are considering proportional subsidies,
there is an implicit redistribution from the latter to the former.

27



To understand in which direction redistributive concerns would push, we proceed as follows.
Since we do not have household income data at the NFIP policy level, we assign to each policy-
holder the median income of their census tract, which is the most granular geographic identifier in
the data. We simulate the net gains and losses from a 1% subsidy funded by a lump sum tax on
all the insured. The results are in Figure 7.

Figure 7 about here

Figure 7 bins everyone by their income, and then within each bin calculates the average net
gain or loss from the simulated subsidy. The height of the bars represents the average gain/loss;
the color represents the number of people within each bin.

We see that the redistributive implications of the subsidy we consider are minor. The bulk of
the affected individuals have incomes from $50, 000 to $100, 000. The subsidy effectively transfers
a dollar from those earning $50, 000 − $70, 000 to those earning $80, 000 − $100, 000. Additionally,
there is a transfer among the relatively few policy holders at very high or very low income: those
earning more than $170, 000 or less than $50, 000 subsidize those earning $150, 000 to $170, 000.

Overall, there is a relatively weak positive association between income and gains under the
subsidy. This could be reversed by funding any subsidy out of a progressive tax (e.g. income tax),
but we do not pursue this issue further here.

9.6.2 SFHA Regulations

An SFHA designation has two main effects: it mandates mitigation, reducing that margin to zero,
and it mandates insurance take-up (although not perfectly enforced) so the demand semi-elasticity
is 0.25 instead of 0.32 (see Table 3). The analogue of Figure 6 with the SFHA restrictions is
displayed in Figure 8.

Figure 8 about here

Because the SFHA regulationsmandatemitigation, a premium subsidy has a lower cost. Hence,
at any combination of ℰ𝑞 and ̄𝑃 , the optimal subsidy is higher than in the baseline. In particular, at
the SFHA-estimated demand elasticity of 0.25, and the baseline premium estimate of ̄𝑃 = $1, 500,
the optimal subsidy is 62.8%, an increase relative to the baseline of about 5%.

9.6.3 Heterogeneity in Demand and FEMA Savings

As a robustness check, we relax homogeneity along two margins. First, we allow the FEMA
spillover to vary linearly with the subsidy. We estimate, shown in Appendix A.5, that instead of
a flat $ − 203 effect, an increasing FEMA saving with respect to 𝑠: starting at $ − 116 at 𝑠 = 0 rising
(in magnitude) with a slope of $ − 112. This attenuates the average FEMA-savings benefit over the
relevant range—despite a mild upward slope in 𝑠—so the marginal-benefit curve shifts down and
the optimal subsidy falls.
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Second, we allow the demand semi-elasticity to vary linearly with the subsidy. Per Table 3,
the elasticity at 𝑠 = 0 is ≈ 0.61 falling linearly to −0.27 as the subsidy increases to 100%. This
makes the costs more convex in 𝑠, offset only by a linear increase on the benefit side. The former
dominates and the optimal subsidy increases to be above our baseline. We conclude that our
baseline estimate of approximately 62% is, if anything, conservative.

9.6.4 ‘Worst-Case’ Sensitivity

Given the limitations of our data, one might be concerned that we have overstated the benefits and
understated the costs. For example, the location and mitigation elasticities we have measured are
relatively short run (only three or four years since RR2.0) and might increase over time. We check
the sensitivity of our policy prescriptions to assumptions on costs and benefits.

We assume that the migration response is 1.5% instead of 0.86%. The former is the estimate
from Boustan et al. (2020) of population responses to natural disasters, surely an upper bound
for responses to a subsidy change. We assume the mitigation response is twice as large as in
our baseline (instead of about 25 cents per house year at 𝑠 = 1/2, we assume 50 cents). Corre-
spondingly, we take conservative estimates for the benefits: we discount the reclassification risk
insurance benefits by 2% a year for 35 years, and we assume the FEMA spillover is only $116
per percent of coverage, the minimum we found in our heterogeneity analysis. We recompute the
optimal subsidy with these assumptions. The results are in Figure 9.

Figure 9 about here

Under these very high estimates for the costs of a subsidy, and very low estimates for the ben-
efits, the optimal subsidy is between 30 and 35%. Although half as big as our baseline estimates,
this is still far from zero. Our qualitative conclusion is that a non-trivial premium subsidy is optimal
under a wide variety of assumptions and estimates.

10 Conclusion

The ongoing increase in “global weirding”13 has raised attention to the risks posed to households
from natural disasters. One of the most salient and most discussed is flood damage. In 2024 alone,
over 100,000 houses suffered flood damage for a total cost of more than $10 billion (Reinsurance
News (2024)).

In theory, such damage is offset by mandated flood insurance offered by the National Flood
Insurance Program. But in practice, NFIP coverage is very incomplete, with only 5% of households
nationwide holding policies. Coverage is incomplete even in designated high risk Special Flood
Hazard Areas averaging only 23% (Amornsiripanitch et al. (2024)).

13See Friedman (2010)
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One response to this lack of coverage was extensive subsidies offered for the purchase of the
NFIP – both in terms of a reduced average premium, and mitigated variation by risk level of the
area. But this has long been criticized as promoting development – and retarding mitigation – in
our most flood-prone areas. As a result, in 2021 the government introduced a new actuarially fair
pricing system for flood insurance, Risk Rating 2.0, which properly reflected the cost of flood risk
around the country.

But what has largely been ignored in the praise for this new policy is the fact that flood insur-
ance operates in a second-best world. In particular, the existence of an incomplete mandate for
insurance, combined with ex post government spending to bail out flooded homes, means that re-
moving subsidies leads to a rise in ex post disaster spending. We estimate that this is a very large
offsetting source of increased government spending, with each 1% fall in flood insurance coverage
leading to $203 per household in additional (flood-risk weighted) recovery spending.

Moreover, the large idiosyncratic risk faced by households due to uninsurable locational vari-
ation in the impacts of future climate changes means that there is a welfare loss arising from
actuarially fair pricing. We estimate that this reclassification risk is also sizeable, amounting to $64
per insured household for standard risk preference assumptions.

To assess the importance of these offsetting costs to moving to RR2.0, we also estimate the
benefits in terms of both population movement and mitigation. In fact, we find that these benefits
are much smaller than the costs, an effect an order of magnitude lower than the direct benefits
from the FEMA spillover and subsidy expenditures from changed coverage.

We develop a model of optimal flood insurance which allows us to put these estimates together
to calibrate optimal flood subsidies. We find that the optimal subsidy is 57%, and that it is quite
robust to parameter variation. Importantly, any income redistribution done through these subsidies
is minor, and does not offset our conclusion.

As with any exercise of this nature, more work is needed to assess the robustness of our
findings. In particular, our estimates of the benefits of RR2.0 are necessarily short run. Over a
much longer time period, population movements and mitigation may respond more to price signals
and lower the optimal subsidy rate. But it seems very unlikely that the optimal subsidy rate will
approach zero.

Moreover, we critically take FEMA policy as given for this exercise. In fact, if FEMA cuts back
on its ex post assistance to flood victims, that would substantially affect our conclusions. Indeed,
President Trump recently announced his intention to “wind down” FEMA. 14 While that would dra-
matically impact our conclusions, it remains to be seen whether such a radical reform can survive
the political process.

In any case, the main point from our analysis holds: in the second-best world of flood insurance,
careful thought is needed about the various forces that determine optimal insurance pricing policy.

14See: Reuters (2025)
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Table 1. Damage-Weighted Summary Statistics (2010–present)

Variable Weighted Mean Weighted Median 90th Percentile

Panel A: Aggregate (levels)

Property Damage (millions USD) 4,700 3,200 10,000
Total Population 980,771 345,995 4,525,519
Total Housing Units 380,678 142,115 1,714,340

Panel B: Per house

NFIP Policies per House 0.18 0.16 0.49
NFIP Payouts per House ($) 3,440.41 1,798.16 8,255.15
Total Non-NFIP Spending per House ($) 955.30 700.14 2,566.32
FEMA Assistance Claims per House 0.08 0.06 0.20
Property Damage per House ($) 31,920.97 27,454.25 81,466.06
Disaster Assistance per House ($) 733.16 431.34 1,822.86
Fannie Mae Losses per House ($) 3.11 1.17 6.14
Freddie Mac Losses per House ($) 1.71 0.29 2.53
HGMP Expenditures per House ($) 147.42 88.94 282.36
Approved SBA Loans per House ($) 703.57 301.30 1,404.00

Notes: Sample statistics are from counties with presidentially declared disasters from 2010 to 2024 where assistance under
the Individuals and Households Program (IHP) was authorized. All statistics are damage-weighted using county-level flood
property damage from the NOAA Storm Events database. Panel A reports aggregate (level) outcomes for each disaster-
county; Panel B reports per house in the county averages. Dollar amounts are inflated to 2023 dollars.
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Figure 1. Response of NFIP coverage to neighboring-county floods

Notes: Event-study estimates from a regression of NFIP coverage per house (measured two months before flood on-
set) on indicators for years since the most recent flood in the closest neighboring county, controlling for years since
own-county flood and flexible quadratic functions of flood damage within bins (cutoffs at $1, $10, $100, $1,000, $10,000,
$100,000, and $1,000,000 per house). Sample includes U.S. counties with presidentially declared flood disasters from
2010 to 2024 where Individuals and Households Program (IHP) assistance was authorized; observations weighted by
county-level flood property damage (NOAA Storm Events Database) and inflated to 2023 dollars. Coefficients normal-
ized to zero in the year before the neighboring flood; 95% confidence intervals based on standard errors clustered at
the county level.
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Figure 2. Response of ex-post spending to neighboring-county floods

Notes: Event-study estimates from a regression of total ex-post disaster spending per house on indicators for years since
themost recent flood in the closest neighboring county, controlling for years since own-county flood and flexible quadratic
functions of flood damage within bins (cutoffs at $1, $10, $100, $1,000, $10,000, $100,000, and $1,000,000 per house).
Sample includes U.S. counties with presidentially declared flood disasters from 2010 to 2024 where Individuals and
Households Program (IHP) assistance was authorized; observations weighted by county-level flood property damage
(NOAA Storm Events Database) and inflated to 2023 dollars. Coefficients normalized to zero in the year before the
neighboring flood; 95% confidence intervals based on standard errors clustered at the county level.
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Table 2. Main Results: Total Fiscal Cost

OLS IV (Neigh. County Flood
≤ 5 Years)

NFIP Policies per 100 Houses −171.510*** −203.188**
(34.672) (73.416)

Num. Obs. 815 815
Within 𝑅2 0.915 0.912

Notes: Dependent variable is total ex-post disaster spending per house (sum of FEMA IHP
assistance, net fiscal cost of SBA loans, HMGP expenditures, and GSE foreclosure losses;
all inflated to 2023 dollars). Each column reports coefficients from a two-way fixed effects
regression of ex-post spending on NFIP coverage per 100 houses (measured two months
pre-flood), with quadratic controls within bins of flood damage per house. Sample includes
U.S. counties with presidentially declared flood disasters from 2010 to 2024 where Individ-
uals and Households Program (IHP) assistance was authorized; observations weighted by
county-level flood property damage. The IV specification instruments NFIP coverage using
an indicator for a flood in the closest neighboring county within the past 5 years. Standard
errors clustered at the county level in parentheses. Standard errors in parentheses. Signifi-
cance: + 𝑝 < 0.10, ∗ 𝑝 < 0.05, ∗ ∗ 𝑝 < 0.01, ∗ ∗ ∗ 𝑝 < 0.001.
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Table 3. Renewal vs. Price Relative to Full-Risk: Semi-Elasticity and Heterogeneity

(1) (2) (3)
Semi-Elasticity Only + Relative Price Interaction + SFHA Interaction

Log(Price/Full-
Risk)

−0.322∗∗∗ −0.270∗∗∗ −0.396∗∗∗

(0.002) (0.002) (0.003)

Log(Price/Full-
Risk)× Price/Full-
Risk

−0.338∗∗∗

(0.007)

Log(Price/Full-
Risk) × SFHA

0.146∗∗∗

(0.004)
Policy FE Yes Yes Yes
𝑁 4,905,305 4,905,305 4,905,305
Adj. 𝑅2 0.53 0.53

Notes: Each column reports estimates from a linear probability model of NFIP policy renewal (an indicator for renewal
into year 𝑡 + 1) on the log of the relative renewal price 𝑃̃𝑖,𝑡 ≡ 𝑃 offer

𝑖,𝑡+1/𝑅𝑖,𝑡+1, where 𝑃 offer
𝑖,𝑡+1 is the offered renewal

premium (capped at 18% annual increase or full-risk level) and 𝑅𝑖,𝑡+1 is the full risk-based premium under Risk Rating
2.0 (RR2.0). Columns (2) and (3) add interactions for heterogeneity by subsidy level (Price/Full-Risk) and Special
Flood Hazard Area (SFHA) indicator, respectively. Standard errors clustered at the policy level in parentheses.
Significance: 𝑝 < 0.001, ∗∗𝑝 < 0.01, ∗𝑝 < 0.05.
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Table 4. Summary Statistics of Premiums and Hazard Metrics

Metric Mean SD P10 P90

Panel A: Pre RR2.0 Premiums

Pre RR2.0 Premium 913.00 1604.0 341.00 1763.00

Panel B: RR2.0 Premiums & Current Hazard Levels (IDW)

RR2.0 Premium 1772.00 4107.0 386.00 3772.00
100-year Rainfall Depth (mm) 171.00 54.0 77.00 235.00
100-year Storm Tide Water Level (mm) 2523.00 865.0 1287.00 3647.00
Joint Probability (%) (x 100) 0.32 0.1 0.17 0.46

Panel C: Future Premiums and Hazard Levels

Future Premium (Scenario Avg) 6382.00 3317.0 3668.00 8665.00
100-year Rainfall Depth (mm) 802.00 292.0 309.00 1204.00
100-year Storm Tide Water Level (mm) 3668.00 1335.0 1824.00 5601.00
Joint Probability (%) (x 100) 5.59 2.0 2.60 8.46

Panel D: Decomposition Across Climate Scenarios

Household Fixed Effect 0.00 3317.0 -2715.00 2283.00
Scenario Fixed Effect (vs current mean) 4611.00 3489.0 1974.00 9634.00
Idiosyncratic Risk 0.00 1554.0 -1342.00 1666.00

Notes: Notes: Summary statistics at the property level for NFIP policies priced under Risk Rating 2.0
(RR2.0). Panels A–B report historical premiums (pre- and post-RR2.0 implementation) and current (IDW-
interpolated) hazard metrics from Gori et al. (2021) synthetic flood data under present climate. Panel C
projects 2070 premiums (scenario average) and hazards under SSP5-8.5 across eight CMIP6 general
circulation models, holding property characteristics fixed and mapping hazards to premiums via OLS
regression on rainfall depth (mm), storm tide level (mm), joint exceedance probability (%), granular
building controls. Panel D decomposes cross-scenario variability in future premiums into household
fixed effects (𝛾𝑖), scenario fixed effects (vs. current mean), and idiosyncratic residuals (𝜀𝑖𝜔). All values
in constant 2023 dollars.
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Figure 3. Variability in Future Flood Risk Scenarios

Notes: Scatter plot of projected 2070 percentage premium changes (relative to current RR2.0 levels) for a random
sample of NFIP policies under two climate models (MPI on horizontal axis; IPSL on vertical), using synthetic flood
data from Gori et al. (2021) under SSP5-8.5 warming scenario. Dashed 45-degree line represents pure aggregate risk
(uniform scaling across households); deviations above/below reflect idiosyncratic reclassification risk, while cross-model
flips (e.g., high in one, low in the other) illustrate diversifiability across households.
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Table 5. Reclassification Risk Results

Coefficient of
Absolute Risk Aversion

Reclassification Risk
Insurance Value (Level)

5 × 10−5 $8.5

1 × 10−4 $18.7

2 × 10−4 $39.8

5 × 10−4 $64.5

Notes: Each row reports the pure insurance value (in 2023 dollars)
of reinstating a 50% average subsidy against idiosyncratic reclassi-
fication risk, net of mechanical transfers (𝑐𝑖), under constant abso-
lute risk aversion (CARA) utility 𝑢(𝑐) = −exp(−𝛾𝑐). 𝛾 values span
literature estimates: 5 × 10−5 (lower bound, Cohen et al. 2007);
5×10−4 (central estimate, conservative relative to Sydnor 2010 and
Barseghyan et al. 2011). At central 𝛾 = 5 × 10−4, value is $64.5
(7% of pre-RR2.0 premium, 1% of projected future premium).
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Figure 4. Mitigation Changes Under RR2.0

Notes: Event-study estimates from regressions of an indicator for elevating the lowest floor by 3+ feet (relative to base
flood elevation inside SFHA or local ground outside) on indicators for years relative to RR2.0 implementation (2022
as reference), interacted with higher-risk flood zone category, separately inside (top panel) and outside (bottom panel)
Special Flood Hazard Areas (SFHAs). Inside SFHA: higher-risk = very high (V zones with velocity waves) vs. high (A
zones); outside: moderate (shaded X) vs. low (unshaded X). Sample: all Florida elevation certificates filed 2017–2024.
The estimating equation is (3).
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Figure 5. Location Changes Under RR2.0

Notes: Event-study estimates from regressions of log(1 + OccupiedResidential𝑐, 𝑡, 𝑞) (quarterly occupied residen-
tial addresses from USPS) on indicators for quarters relative to Q1 2022 (RR2.0 rollout completion), interacted with
MedianIncrease𝑐𝑡 (indicator for census tract 𝑐 where median NFIP premium increased under RR2.0).
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Figure 6. Optimal Subsidy

Notes: Heatmap of optimal subsidy rate 𝑠 that solving the calibrated benefit-cost condition from Proposition 2 for dis-
crete household choices (insure/uninsure; elevate/not; high-/low-risk location), across combinations of average full-risk
premium among marginals 𝑃̄ (horizontal axis, $800 – $3,000) and insurance demand semi-elasticity ℰ𝑞 (vertical axis,
-0.2 to -8).
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Figure 7. Redistribution.....

Notes: Bar chart of average net gain/loss (height, 2023 dollars) from a simulated 1% subsidy on NFIP premiums (funded
by lump-sum tax on all insured households), binned by census tract median household income (x-axis bins: $0–$50k,
$50k–$70k, etc., up to $170k+). Color intensity represents number of policies (sample size) per bin. Simulation assigns
tract median income (ACS) to each NFIP policy; net gain/loss = subsidy received minus tax paid, averaged within bin.
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Figure 8. Optimal Subsidy with SFHA Restrictions Imposed

Notes: Analogous to Figure 6, but incorporates SFHA regulations: mitigation elasticity set to zero (mandated) and
demand semi-elasticity to -0.25.
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Figure 9. Optimal Subsidy with Upper Bounds on Costs and Lower Bounds on Benefits

Notes: Analogous to Figure 6, but with ‘worst-case’ assumptions: location elasticity -0.015 (Boustan et al. 2020 upper
bound); mitigation externality 2x baseline; reclassification WTP discounted 2%/year over 35 years; FEMA spillover fixed
at -$116/pp (minimum from heterogeneity, Appendix A.5).
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Table A1. Main Results: Total Fiscal Cost

OLS IV

NFIP Policies per 100 Houses −175.468*** −221.144**
(33.363) (75.604)

Damage Control Binned
First-stage 𝐹 -stat. 152.17
Num. Obs. 783 783
Within 𝑅2 0.916 0.911

Notes: Standard errors in parentheses. Significance: + 𝑝 < 0.10, ∗ 𝑝 <
0.05, ∗ ∗ 𝑝 < 0.01, ∗ ∗ ∗ 𝑝 < 0.001.
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Table A2. Fiscal Cost Decomposition: FEMA Disaster Assistance

OLS IV

NFIP Policies per 100 Houses −150.659*** −169.732**
(29.187) (57.250)

Damage Control Binned
First-stage 𝐹 -statistic 183.11
Num. Obs. 815 815
Within 𝑅2 0.907 0.906

Notes: Standard errors in parentheses. Significance: + 𝑝 < 0.10, ∗ 𝑝 <
0.05, ∗ ∗ 𝑝 < 0.01, ∗ ∗ ∗ 𝑝 < 0.001.
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Table A3. Fiscal Cost Decomposition: SBA Fiscal Cost

OLS IV

NFIP Policies per 100 Houses −18.537* −10.443
(8.559) (17.998)

Damage Control Binned
Num. Obs. 815 815
Within 𝑅2 0.801 0.795

Notes: Standard errors in parentheses. Significance: + 𝑝 < 0.10,
∗ 𝑝 < 0.05, ∗ ∗ 𝑝 < 0.01, ∗ ∗ ∗ 𝑝 < 0.001.
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Table A4. Fiscal Cost Decomposition: HGMP Payouts

OLS IV

NFIP Policies per 100 Houses −2.917 −21.664
(9.751) (19.516)

Damage Control Binned
Num. Obs. 815 815
Within 𝑅2 0.367 0.342

Notes: Standard errors in parentheses. Significance: + 𝑝 <
0.10, ∗ 𝑝 < 0.05, ∗ ∗ 𝑝 < 0.01, ∗ ∗ ∗ 𝑝 < 0.001.
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Table A5. Fiscal Cost Decomposition: Freddie Mac

OLS IV

NFIP Policies per 100 Houses 0.611* 0.603
(0.288) (0.835)

Damage Control Binned
First-stage 𝐹 -statistic 173.83
Num. Obs. 810 810
Within 𝑅2 0.259 0.259

Notes: Standard errors in parentheses. Significance: + 𝑝 <
0.10, ∗ 𝑝 < 0.05, ∗ ∗ 𝑝 < 0.01, ∗ ∗ ∗ 𝑝 < 0.001.
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Table A6. Fiscal Cost Decomposition: Fannie Mae

OLS IV

NFIP Policies per 100 Houses 0.244 −1.212
(0.161) (0.995)

Damage Control Binned
First-stage 𝐹 -statistic 167.41
Num. Obs. 809 809
Within 𝑅2 0.700 0.597

Notes: Standard errors in parentheses. Significance: + 𝑝 <
0.10, ∗ 𝑝 < 0.05, ∗ ∗ 𝑝 < 0.01, ∗ ∗ ∗ 𝑝 < 0.001.
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Table A7. Robustness to Different Damage Controls

Panel A: Baseline, Cont. (Cubic), Baseline + Cubic

Baseline Cont. (Cubic) Baseline + Cubic

OLS IV OLS IV OLS IV

NFIP Policies per 100 Houses −171.5*** −203.2** −221.4** −304.8** −166.6*** −207.1**
(34.672) (73.416) (84.873) (97.919) (39.899) (72.232)

Num. Obs. 815 815 815 815 815 815
Within 𝑅2 0.915 0.912 0.831 0.813 0.916 0.913

Panel B: Cont. (Quintic), Log-Linear, Hybrid

Cont. (Quintic) Log-Linear Hybrid

OLS IV OLS IV OLS IV

NFIP Policies per 100 Houses −189.3* −296.9** −320.6*** −382.7*** −159.2** −217.0**
(85.751) (100.095) (30.326) (22.572) (53.146) (79.119)

Num. Obs. 815 815 815 815 815 815
Within 𝑅2 0.845 0.820 0.783 0.762 0.892 0.884

Panel C: Baseline + Log, Wide Bins, Piece-wise Linear Steps

Baseline + Log Wide Bins Piece-wise Linear Steps

OLS IV OLS IV OLS IV

NFIP Policies per 100 Houses −246.0*** −345.3*** −231.6** −307.0*** −165.8*** −211.8**
(30.786) (29.042) (86.586) (78.068) (47.868) (77.730)

Num. Obs. 815 815 815 815 815 815
Within 𝑅2 0.823 0.794 0.853 0.839 0.887 0.883

Notes: Standard errors in parentheses. Significance: + 𝑝 < 0.10, ∗ 𝑝 < 0.05, ∗ ∗ 𝑝 < 0.01, ∗ ∗ ∗ 𝑝 < 0.001.
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A.1 Testing Assumption A2

We empirically test Assumption A2 – whether household–level idiosyncratic premium residuals
tend to be high in bad aggregate climate states by computing. We compute, for each policy 𝑖, the
correlation across scenarios 𝜔 between the state aggregate marginal utility 𝑢̄′

𝑇 (𝜔) and the residual
𝜀𝑖𝜔 from the premium decomposition

𝑃𝑖(𝜔) = ̄𝑃 (𝜔) + 𝑎𝑖 + 𝜀𝑖𝜔, ̄𝑃 (𝜔) = ∑
𝑖

𝑤̃𝑖 𝑃𝑖(𝜔), 𝑤̃𝑖 ∝ 𝐵𝑖,

where 𝐵𝑖 is building+contents exposure and ∑𝑖 𝑤̃𝑖 = 1. Predicted premiums 𝑃𝑖(𝜔) come from
the IDW hazard mapping and simple regressions evaluated for eight scenarios (equal scenario
weights 𝑤𝜔 = 1/8).

Utility is either assumed to be of CRRA form with 𝛾 = 2 or CARA with 𝑎 = 10−4. The state
average marginal utility is 𝑢̄′

𝑇 (𝜔) = ∑𝑗 𝜃𝑗(𝜔) 𝑢′
𝑗(𝑐𝑗(𝜔)), under (i) equal per–policy incidence 𝜃𝑗(𝜔) =

1/𝑁𝜔 and (ii) exposure–weighted incidence 𝜃𝑗(𝜔) ∝ 𝑃𝑗 (renormalized within 𝜔).

Correlation and aggregation. For each household 𝑖, we compute

Corr𝜔(𝑢̄′
𝑇 , 𝜀𝑖𝜔) = Cov𝜔(𝑢̄′

𝑇 , 𝜀𝑖𝜔)
√Var𝜔(𝑢̄′

𝑇 )Var𝜔(𝜀𝑖𝜔) ,

with equal scenario weights. We summarize these per–𝑖 correlations by the (i) unweighted mean
across 𝑖, and (ii) premium–weighted mean. The results are in Table A8.

Table A8. Correlation across scenarios: Corr𝜔(𝑢̄′
𝑇 , 𝜀𝑖𝜔)

𝑁 Unweighted Corr (Mean) Cash–Weighted Corr (WMean)

CRRA 609,562 0.0363 0.0726
CARA 609,562 0.0920 0.1199

Notes: Correlations are computed per policy across eight scenarios (equal scenario probabilities). “Cash–weighted”
averages use premium weights. T

We find strong empirical support for a negligible correlation, justifying Assumption A2.

A.2 Robustness to Discounting Assumptions

The premium risk individuals face due to future climate uncertainty is measured in 2070. Never-
theless, we are solving for the optimal subsidy today. In the main paper we do not discount this by
appealing to an offsetting growth in house prices. To test the robustness of our policy prescriptions
to this assumption, here we discount the value of reclassification risk by 2% a year for 35 years.
That is, the reclassification risk value is multiplied by 1/(1.02)35 ≈ 0.5 and then the optimal subsidy
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is computed as before. The analogue of Figure 6 with the discounted reclassification risk values
is Figure 10, which follows.

Figure 10. Optimal Subsidy with SFHA Restrictions Imposed

Figure 10 shows that the optimal subsidy changes falls by less than 1% at any combination of
(ℰ, ̄𝑃 ) considered, and by less than 0.25% at the benchmark values of ℰ = 0.32, ̄𝑃 = $1, 500.
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A.3 Flood Hazard to Premium Regression

Table A9. Regression Mapping Hazard Factors to RR2.0 Premiums

IDW

100-yr Rainfall (mm) 3.926***
(0.104)

100-yr Storm Tide (mm) 1.068***
(0.007)

Annual Joint Probability 36763.045***
(6006.871)

Num. Obs. 879,021
𝑅2 0.344

Notes: The dependent variable is the RR2.0 full-
risk premium. Standard errors are reported in
parentheses.
Significance: + 𝑝 < 0.10, ∗ 𝑝 < 0.05, ∗ ∗ 𝑝 <

0.01, ∗ ∗ ∗ 𝑝 < 0.001.

A.4 Between-County Demand Elasticity Estimates

We proceed analogously to the analysis in Section 8, except at the county level. We compare the
number of NFIP policies in county 𝑐 measured in year 𝑡, NFIP Policies𝑐,𝑡, across counties that on
average experienced a price increase versus a decrease under RR2.0. Specifically, we estimate

log(NFIP Policies𝑐,𝑡) = 𝛼𝑐 + 𝛾𝑡 + ∑
𝑡′≠2021

𝛽𝑡′(MedianIncrease𝑐𝑡 × 1{𝑡 = 𝑡′}) + 𝜀𝑐,𝑡, (6)

where 𝛼𝑐 are county fixed effects, 𝛾𝑡 are year fixed effects, and we weight by premium. The coeffi-
cients of interest are 𝛽𝑡′ , which capture the relative difference in occupied residences in the more-
versus less-exposed census tracts, normalized to zero in 2021. Figure 11 plots the estimated 𝛽𝑞′ .
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Figure 11. Between-County Demand Estimates

We see, by the end of 2024, a drop in demand that is 13% higher in the treated counties than
the control. The treated counties have average pre- and post-RR2.0 premiums of $918 and $1, 808
respectively, while the control counties have $688 and $904. In other words, the relative price
increase is 96% and 31% in the treatment and control counties respectively. Hence, a 13% greater
demand drop relative to a 65% greater price drop implies an elasticity of 0.2. This is similar to our
within-policy estimates, and to the extant literature.

A.5 Heterogeneity in the Fiscal Spillover

In the main paper we assumed that the spillover from more insurance coverage onto ex-post assis-
tance was constant (in the level of subsidy 𝑠). In other words, the identity of the marginal insured
did not affect the spillover. Here we loosen that restriction by estimating:

ExPost Spending𝑐,𝑓 = 𝛼𝑐 + 𝛾𝑡 + 𝛽0 NFIP Coverage𝑐,𝑓

+ 𝛽1 NFIP Coverage𝑐,𝑓 × PreRR2.0 Price
PostRR2.0 Price 𝑐

+ 𝑓(Flood Damage𝑐,𝑓) + 𝜖

The coefficients of interest are 𝛽0, the fiscal spillover per percentage of NFIP coverage with a
100% subsidy, and 𝛽1 the fiscal spillover term interacted with a change of the subsidy from 100%
to zero. The results are in Table A10 below.
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Table A10. Heterogeneity Results: Total Fiscal Cost

OLS IV

NFIP Policies per 100 Houses −228.102* −463.722
(115.3) (421.0)

NFIP Policies per 100 Houses × Pre/Post RR2.0 Price Ratio 112.960 645.903
(181.50) (974.61)

Damage Control Binned
First-stage 𝐹 -stat. 128.44
Num. Obs. 783 783

Notes: Standard errors in parentheses. Significance: + 𝑝 < 0.10, ∗ 𝑝 < 0.05, ∗∗ 𝑝 < 0.01, ∗∗∗ 𝑝 < 0.001.

Table A10 shows that the spillover is more pronounced a higher subsidy levels. In a (hypotheti-
cal) county with a 100% subsidy, every additional percentage of NFIP coverage reduces spillovers
by about $228. In contrast, if there is no subsidy, an additional percentage of coverage reduces
ex-post spillovers by only $115. These effects are relatively imprecisely estimated, since they are
estimated from only 783 floods. The IV estimates ae similar in sign but very imprecisely estimated.
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B Proofs

Proof of Proposition 1

Recall the public outlays

Out(𝜔; 𝑠) = ∑
𝑖

𝑠 𝑞𝑖 𝑃𝑖(𝜔) + ∑
𝑖

𝑓 (1 − 𝑞𝑖) 𝑃𝑖(𝜔).

The planner’s per–state budget is ∑𝑖 𝑇𝑖(𝜔) = Out(𝜔; 𝑠), and the Lagrangian is

ℒ(𝑠, {𝜇(𝜔)}) = 𝔼𝜔𝔼𝜉[ ∑
𝑖

𝑢(𝑐𝑖(𝜔, 𝜉; 𝑠))] + 𝔼𝜔[𝜇(𝜔)( ∑
𝑖

𝑇𝑖(𝜔) − Out(𝜔; 𝑠))],

with the normalization 𝜇(𝜔) = 𝑢̄′(𝜔) ≡ ∑𝑖 𝔼𝜉𝑢′(𝑐𝑖(𝜔, 𝜉)). We use the decomposition

𝑃𝑖(𝜔) = ̄𝑃 (𝜔) + 𝑎𝑖 + 𝜀𝑖𝜔, 𝔼𝜔[𝜀𝑖𝜔] = 0, ∑
𝑖

𝜀𝑖𝜔 = 0 ∀𝜔.

Within-state actuarial fairness holds for each 𝜔:

𝑃𝑖(𝜔) = 𝔼𝜉[𝐿𝑖(𝜔, 𝜉) ∣ 𝜔], 𝜕𝑃𝑖
𝜕𝑎 (𝜔) = 𝔼𝜉[𝜕𝐿𝑖

𝜕𝑎 (𝜔, 𝜉) ∣ 𝜔], 𝑎 ∈ {𝑚, 𝑥}.

We denote semi–elasticities by

ℰ𝑞
𝑖 ≡ 𝜕𝑞∗

𝑖
𝜕 ln𝔼𝜔[ ̃𝑃𝑖]

, ℰ𝑚
𝑖 ≡ 𝜕𝑚∗

𝑖
𝜕 ln𝔼𝜔[ ̃𝑃𝑖]

, ℰ𝑥
𝑖 ≡ 𝜕𝑥∗

𝑖
𝜕 ln𝔼𝜔[ ̃𝑃𝑖]

.

Note 𝑑 ln𝔼𝜔[ ̃𝑃𝑖]/𝑑𝑠 = −1/(1 − 𝑠). For tax/premium neutrality: Fix a state 𝜔. For any perturba-
tion that changes only 𝑇𝑖(𝜔) by Δ𝑇𝑖(𝜔) (holding choices, losses, and outlays fixed), the first-order
welfare change in state 𝜔 is zero:

∑
𝑖

𝔼𝜉𝑢′
𝑖(𝜔, 𝜉) Δ(−𝑇𝑖(𝜔)) + 𝜇(𝜔) ∑

𝑖
Δ𝑇𝑖(𝜔) = 0,

immediate from 𝜇(𝜔) = ∑𝑖 𝔼𝜉𝑢′
𝑖(𝜔, 𝜉).

Differentiate ℒ w.r.t. 𝑠. Write ̇(⋅) ≡ 𝑑
𝑑𝑠(⋅).

Step 1: Direct (holding choices fixed). Using 𝑐𝑖(𝜔, 𝜉) = 𝑦𝑖 + Γ𝑖(𝑥𝑖) − 𝐶𝑖(𝑚𝑖) − 𝑞𝑖 ̃𝑃𝑖(𝜔; 𝑠, 𝑥𝑖, 𝑚𝑖) −
(1 − 𝑓)(1 − 𝑞𝑖) 𝐿𝑖(𝜔, 𝜉; 𝑥𝑖, 𝑚𝑖) − 𝑇𝑖(𝜔), noting that the only direct dependence on 𝑠 is through ̃𝑃𝑖
and 𝑇𝑖. In particular, ̃𝑃𝑖 = (1 − 𝑠)𝑃𝑖, hence 𝜕 ̃𝑃𝑖/𝜕𝑠 = −𝑃𝑖(𝜔) and we keep ̇𝑇𝑖(𝜔) ≡ 𝑑

𝑑𝑠(𝑇𝑖(𝜔))
general:

𝑑
𝑑𝑠𝔼𝜔𝔼𝜉[𝑢(𝑐)] = 𝔼𝜔𝔼𝜉[ ∑

𝑖
𝑢′

𝑖(𝜔, 𝜉) (−𝑞𝑖) (−𝑃𝑖(𝜔))] + 𝔼𝜔𝔼𝜉[ ∑
𝑖

𝑢′
𝑖(𝜔, 𝜉) (− ̇𝑇𝑖(𝜔))].
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The budget term contributes

𝑑
𝑑𝑠𝔼𝜔[𝜇(∑ 𝑇𝑖 − Out)] = 𝔼𝜔[𝜇(𝜔) ∑

𝑖
̇𝑇𝑖(𝜔)] − 𝔼𝜔[𝜇(𝜔) 𝜕Out

𝜕𝑠 ]
choices fixed

.

Holding choices fixed, since Out(𝜔; 𝑠) = ∑𝑖 𝑠𝑞𝑖𝑃𝑖(𝜔) + ∑𝑖 𝑓(1 − 𝑞𝑖)𝑃𝑖(𝜔), we have 𝜕Out/𝜕𝑠 =
∑𝑖 𝑞𝑖𝑃𝑖(𝜔).

Summing the utility and budget effects we have the direct effect 𝐷 as:

𝐷 = 𝔼𝜔𝔼𝜉[ ∑
𝑖

𝑢′
𝑖(𝜔, 𝜉) (−𝑞𝑖) (−𝑃𝑖(𝜔))]+𝔼𝜔𝔼𝜉[ ∑

𝑖
𝑢′

𝑖(𝜔, 𝜉) (− ̇𝑇𝑖(𝜔))]+𝔼𝜔[𝜇(𝜔) ∑
𝑖

̇𝑇𝑖(𝜔)]−𝔼𝜔[𝜇(𝜔) 𝜕Out
𝜕𝑠 ].

Note that 𝔼𝜔𝔼𝜉[ ∑𝑖 𝑢′
𝑖(𝜔, 𝜉) (− ̇𝑇𝑖(𝜔))] = 𝔼𝜔 [(− ̇𝑇𝑖(𝜔))𝔼𝜉[ ∑𝑖 𝑢′

𝑖(𝜔, 𝜉) ]] = 𝔼𝜔 [(− ̇𝑇𝑖(𝜔))𝑢̄′(𝜔)]
and therefore since, by assumption, 𝜇(𝜔) = 𝑢̄′(𝜔) = 𝔼𝜉 [𝑢′

𝑖(𝜔, 𝜉)] the tax terms cancel and we are
left with

𝐷 ≡ 𝔼𝜔[ ∑
𝑖

(𝔼𝜉𝑢′
𝑖(𝜔, 𝜉) − 𝜇(𝜔)) 𝑞𝑖 𝑃𝑖(𝜔)].

Insert the decomposition 𝑃𝑖 = ̄𝑃 + 𝑎𝑖 + 𝜀𝑖𝜔 to obtain

𝐷 = 𝔼𝜔[ ̄𝑃 (𝜔) ∑
𝑖

(𝑢′
𝑖 − 𝜇)𝑞𝑖] + 𝔼𝜔[ ∑

𝑖
(𝑢′

𝑖 − 𝜇)𝑞𝑖𝑎𝑖]

+ 𝔼𝜔[ ∑
𝑖

(𝑢′
𝑖 − 𝜇)𝑞𝑖𝜀𝑖,𝜔],

where 𝑢′𝑖 = 𝔼𝜉𝑢′
𝑖(𝜔, 𝜉).

Insert the decomposition 𝑃𝑖 = ̄𝑃 + 𝑎𝑖 + 𝜀𝑖𝜔 to obtain

𝐷 = 𝔼𝜔[ ̄𝑃 (𝜔) ∑
𝑖

(𝑢′
𝑖 − 𝜇)𝑞𝑖] + 𝔼𝜔[ ∑

𝑖
(𝑢′

𝑖 − 𝜇)𝑞𝑖𝑎𝑖]

+ 𝔼𝜔[ ∑
𝑖

(𝑢′
𝑖 − 𝜇)𝑞𝑖𝜀𝑖,𝜔],

where 𝑢′
𝑖 = 𝔼𝜉𝑢′

𝑖(𝜔, 𝜉).
We now rewrite each term using covariances over 𝜔.
Starting with the third term, again using 𝜇(𝜔) = 𝑢̄′(𝜔) :

𝔼𝜔[ ∑
𝑖

(𝑢′
𝑖 − 𝜇)𝑞𝑖𝜀𝑖,𝜔] = 𝔼𝜔[ ∑

𝑖
(𝑢′

𝑖 − 𝑢̄′(𝜔))𝑞𝑖𝜀𝑖,𝜔] = ∑
𝑖

𝑞𝑖𝔼𝜔[(𝑢′
𝑖 − 𝑢̄′(𝜔))𝜀𝑖,𝜔].

Since 𝔼𝜔[𝜀𝑖𝜔] = 0,

𝔼𝜔[𝑢′
𝑖𝜀𝑖,𝜔] = Cov𝜔(𝑢′

𝑖, 𝜀𝑖𝜔), 𝔼𝜔[𝑢̄′(𝜔)𝜀𝑖𝜔] = Cov𝜔(𝑢̄′(𝜔), 𝜀𝑖𝜔).
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Thus, the third term is
∑

𝑖
(Cov𝜔(𝑢′

𝑖, 𝑞𝑖𝜀𝑖𝜔) − 𝑞𝑖Cov𝜔(𝑢̄′(𝜔), 𝜀𝑖𝜔)).

For the second term:

𝔼𝜔[ ∑
𝑖

(𝑢′
𝑖 − 𝑢̄′(𝜔))𝑞𝑖𝑎𝑖] = ∑

𝑖
𝑞𝑖𝑎𝑖𝔼𝜔[𝑢′

𝑖 − 𝑢̄′(𝜔)] = ∑
𝑖

𝑞𝑖𝑎𝑖(𝔼𝜔[𝑢′
𝑖] − 𝔼𝜔[𝑢̄′(𝜔)]).

For the first term:

𝔼𝜔[ ̄𝑃 (𝜔) ∑
𝑖

(𝑢′
𝑖−𝑢̄′(𝜔))𝑞𝑖] = Cov𝜔( ̄𝑃 (𝜔), ∑

𝑖
𝑞𝑖(𝑢′

𝑖(𝜔)−𝑢̄′(𝜔)))+𝔼𝜔[ ̄𝑃 (𝜔)]⋅𝔼𝜔[ ∑
𝑖

𝑞𝑖(𝑢′
𝑖−𝑢̄′(𝜔))].

This produces the average selection 𝜔-specific selection terms.
Combining these, we have

𝐷 = ∑
𝑖

(Cov𝜔(𝑢′
𝑖, 𝑞𝑖𝜀𝑖𝜔) − 𝑞𝑖 Cov𝜔(𝑢̄′, 𝜀𝑖𝜔))

+ ∑
𝑖

𝑞𝑖𝑎𝑖(𝔼𝜔[𝑢′
𝑖] − 𝔼𝜔[𝑢̄′])

+ 𝔼𝜔[ ̄𝑃 (𝜔)] ⋅ 𝔼𝜔[ ∑
𝑖

𝑞𝑖(𝑢′
𝑖 − 𝑢̄′(𝜔))]

+ Cov𝜔( ̄𝑃 , ∑
𝑖

𝑞𝑖(𝑢′
𝑖 − 𝑢̄′)).

(A.1)

Setting 𝑑ℒ
𝑑𝑠 = 0 at the optimum yields 𝐷 + 𝐵 = 0. From (A.6), 𝐵 = 1

1−𝑠𝐾̃, where 𝐾̃ =
𝔼𝜔[𝜇(𝜔)( ∑𝑖 ((𝑠 − 𝑓) 𝑃𝑖(𝜔)) ℰ𝑞

𝑖 + ∑𝑖 (𝑠 𝑞𝑖 + 𝑓(1 − 𝑞𝑖)) 𝜕𝑃𝑖(𝜔)
𝜕𝑚𝑖

ℰ𝑚
𝑖 + ∑𝑖 (𝑠 𝑞𝑖 + 𝑓(1 − 𝑞𝑖)) 𝜕𝑃𝑖(𝜔)

𝜕𝑥𝑖
ℰ𝑥

𝑖 )].
Thus, 𝐷 = − 1

1−𝑠𝐾̃. Multiplying both sides by (1 − 𝑠) gives (1 − 𝑠)𝐷 = −𝐾̃, which matches the
proposition with LHS from the covariance rewriting in (A.1) multiplied by (1−𝑠), and RHS from −𝐾̃

Step 2: Behavioral (choices respond to 𝑠). Let 𝑎𝑖 ∈ 𝑞𝑖, 𝑚𝑖, 𝑥𝑖. Total differentiation gives

𝑑ℒ
𝑑𝑠 = 𝐷⏟

Step 1
+ ∑

𝑖
∑

𝑎∈{𝑞,𝑚,𝑥}

𝜕ℒ
𝜕𝑎𝑖⏟

FOC gap

⋅𝑑𝑎𝑖
𝑑𝑠 .

By the envelope theorem (households optimize over 𝔼𝜔𝔼𝜉[𝑢(𝑐)]), 𝜕𝔼𝜔𝔼𝜉[𝑢(𝑐)]/𝜕𝑎𝑖 = 0 (private
terms cancel). What remains in 𝜕ℒ/𝜕𝑎𝑖 is the public-outlay piece valued at 𝜇:

𝜕ℒ
𝜕𝑎𝑖

= −𝔼𝜔[𝜇(𝜔) 𝜕Out
𝜕𝑎𝑖

].

Compute the outlay derivatives (per state):

𝜕Out
𝜕𝑞𝑖

= 𝑠 𝑃𝑖(𝜔) − 𝑓 𝑃𝑖(𝜔), 𝜕Out
𝜕𝑚𝑖

= 𝑠 𝑞𝑖
𝜕𝑃𝑖
𝜕𝑚𝑖

(𝜔) + 𝑓(1 − 𝑞𝑖)
𝜕𝑃𝑖
𝜕𝑚𝑖

(𝜔),
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𝜕Out
𝜕𝑥𝑖

= 𝑠 𝑞𝑖
𝜕𝑃𝑖
𝜕𝑥𝑖

(𝜔) + 𝑓(1 − 𝑞𝑖)
𝜕𝑃𝑖
𝜕𝑥𝑖

(𝜔).

Express 𝑑𝑎𝑖/𝑑𝑠 via semi–elasticities:

𝑑𝑎𝑖
𝑑𝑠 = 𝜕𝑎𝑖

𝜕 ln𝔼𝜔[ ̃𝑃𝑖]
⋅ 𝑑 ln𝔼𝜔[ ̃𝑃𝑖]

𝑑𝑠 = − 1
1 − 𝑠 ℰ𝑎

𝑖 .

The behavioral contribution is

𝐵 = ∑
𝑖

𝔼𝜔[𝜇(𝜔)(−(𝑠−𝑓) 𝑃𝑖(𝜔)⋅𝑑𝑞𝑖
𝑑𝑠 −(𝑠 𝑞𝑖+𝑓(1−𝑞𝑖))

𝜕𝑃𝑖(𝜔)
𝜕𝑚𝑖

⋅ 𝑑𝑚𝑖
𝑑𝑠 −(𝑠 𝑞𝑖+𝑓(1−𝑞𝑖))

𝜕𝑃𝑖(𝜔)
𝜕𝑥𝑖

⋅ 𝑑𝑥𝑖
𝑑𝑠 )].

Insert (A.5):

𝐵 = 1
1 − 𝑠 𝔼𝜔[𝜇(𝜔)( ∑

𝑖
((𝑠−𝑓) 𝑃𝑖(𝜔)) ℰ𝑞

𝑖 +∑
𝑖

(𝑠 𝑞𝑖+𝑓(1−𝑞𝑖))
𝜕𝑃𝑖(𝜔)

𝜕𝑚𝑖
ℰ𝑚

𝑖 +∑
𝑖

(𝑠 𝑞𝑖+𝑓(1−𝑞𝑖))
𝜕𝑃𝑖(𝜔)

𝜕𝑥𝑖
ℰ𝑥

𝑖 )].

Setting 𝑑ℒ/𝑑𝑠 = 0 at the optimum and multiplying by (1-s) yields the proposition, with LHS from
(A.1) and RHS from -(1-s) B from (A.6).

Proof of Proposition 2

Start from Proposition 1. Under A1-A4:

• A2 removes the macro–idiosyncratic correction −(1 − 𝑠) ∑𝑖 𝑞𝑖Cov𝜔(𝑢̄′, 𝜀𝑖𝜔) on the LHS.

• A4 removes the risk-class redistribution (1 − 𝑠) ∑𝑖 𝑞𝑖𝑎𝑖(𝔼𝜔[𝑢′𝑖] − 𝔼𝜔[𝑢̄′]).

• A3 kills the state-specific selection (1 − 𝑠)Cov𝜔( ̄𝑃 , ∑𝑖 𝑞𝑖(𝑢′𝑖 − 𝑢̄′)).

• A1 (Cov𝜔(𝜇(𝜔), 𝑃𝑖(𝜔)) = 0 and for derivatives) allows decomposing theRHS: e.g., 𝔼𝜔[𝜇(𝜔)(𝑠−
𝑓)𝑃𝑖(𝜔)ℰ𝑞

𝑖 ] = (𝑠 − 𝑓)ℰ𝑞
𝑖 𝔼𝜔[𝜇(𝜔)] ̄𝑃𝑖 (no cov), simplifying to averages.

What remains on the LHS is the idiosyncratic reclassification-insurance term

(1 − 𝑠) ∑
𝑖
Cov𝜔(𝑢′

𝑖, 𝑞∗
𝑖 𝜀𝑖𝜔),

and the RHS reduces to the three public wedges with averages:

−𝔼𝜔[𝜇(𝜔)( ∑
𝑖

((𝑠−𝑓) ̄𝑃𝑖) ℰ𝑞
𝑖 +∑

𝑖
(𝑠 𝑞∗

𝑖 +𝑓(1−𝑞∗
𝑖 )) 𝔼𝜔[𝜕𝑃𝑖

𝜕𝑚 ] ℰ𝑚
𝑖 +∑

𝑖
(𝑠 𝑞∗

𝑖 +𝑓(1−𝑞∗
𝑖 )) 𝔼𝜔[𝜕𝑃𝑖

𝜕𝑥 ] ℰ𝑥
𝑖 )].

To simplify the the behavioral term, we formally state our assumptions of the 𝑚 and 𝑥 margins
only mattering smoothly among the insured:

A6 (Insured-only behavioral margins) For 𝑞∗
𝑖 (𝑠) = 0, 𝜕𝑚∗

𝑖
𝜕 ln𝔼𝜔[ ̃𝑃𝑖]

= 0 and 𝜕𝑥∗
𝑖

𝜕 ln𝔼𝜔[ ̃𝑃𝑖]
= 0.
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A7 (No jump at switching / smooth pasting) For marginal switchers at 𝑠, 𝑚1
𝑖 (𝑠) = 𝑚0

𝑖 (𝑠) and
𝑥1

𝑖 (𝑠) = 𝑥0
𝑖 (𝑠), so there is no discrete level change in 𝑚, 𝑥 when 𝑞 flips.15

Hence, by A6, ℰ𝑚
𝑖 = ℰ𝑥

𝑖 = 0 whenever 𝑞∗
𝑖 (𝑠) = 0, so the mitigation/location pieces reduce to

𝑠 𝑞∗
𝑖 (𝑠) × (⋯) and can be re-indexed to ℐ1(𝑠) with conditional semi-elasticities ℰ𝑚∣1

𝑖 , ℰ𝑥∣1
𝑖 . By A7,

there is no additional “switching” term from discrete jumps in 𝑚, 𝑥 at the coverage boundary. The
coverage term remains (𝑠 − 𝑓) ̄𝑃𝑖 ℰ𝑞

𝑖 (marginal entry/exit).
Thus, from 0 = 𝑑ℒ

𝑑𝑠 = 𝐷 + 𝐵 and (as in the general proof) 𝐵 = 1
1−𝑠 × [RHS bracket], multiply by

(1 − 𝑠) to obtain the stated condition:

(1 − 𝑠)𝐷 = − 𝔼𝜔[𝜇(𝜔)( ∑
𝑖

(𝑠 − 𝑓) ̄𝑃𝑖 ℰ𝑞
𝑖 + 𝑠 ∑

𝑖∈ℐ1(𝑠)
(𝔼𝜔[𝜕𝑃𝑖

𝜕𝑚 ] ℰ𝑚∣1
𝑖 + 𝔼𝜔[𝜕𝑃𝑖

𝜕𝑥 ] ℰ𝑥∣1
𝑖 ))].

Proof of Two-State Model

Proposition 3 (Two-state identity for the reclassification term). Under the example assumptions—
fixed behavior at (𝑥,𝑚,𝑞∗), constant aggregate price and losses across states—the covariance
simplifies to:

Cov𝜔(𝑢′, 𝑞∗𝜀𝜔) = 𝑞∗ (𝑢′𝐵 − 𝑢′𝐺

Δ𝜀 )Var𝜔(𝜀𝜔).

Proof. With fixed 𝐿 and ̄𝑃 , consumption differs only via 𝜀𝜔: 𝑐𝐵 −𝑐𝐺 = −(1−𝑠)𝑞∗Δ𝜀 < 0 (assuming
Δ𝜀 > 0), so 𝑢′𝐵 > 𝑢′𝐺. The covariance is 𝑞∗Cov𝜔(𝑢′, 𝜀𝜔) = 𝑞∗𝔼𝜔[𝑢′𝜀𝜔] (since 𝔼𝜔[𝜀𝜔] = 0):

𝔼𝜔[𝑢′𝜀𝜔] = (1 − 𝜋)𝑢′𝐵(𝜋Δ𝜀) + 𝜋𝑢′𝐺(−(1 − 𝜋)Δ𝜀) = 𝜋(1 − 𝜋)Δ𝜀(𝑢′𝐵 − 𝑢′𝐺).

And Var𝜔(𝜀𝜔) = 𝜋(1 − 𝜋)(Δ𝜀)2, so:

Cov𝜔(𝑢′, 𝑞∗𝜀𝜔) = 𝑞∗ ⋅ 𝜋(1 − 𝜋)Δ𝜀(𝑢′𝐵 − 𝑢′𝐺)
Δ𝜀 ⋅ Δ𝜀 = 𝑞∗ (𝑢′𝐵 − 𝑢′𝐺

Δ𝜀 )Var𝜔(𝜀𝜔).

15Equivalently, the “switching term” (𝑧1
𝑖 − 𝑧0

𝑖 ) 𝜕𝑞∗
𝑖/𝜕 ln𝔼𝜔[𝑃̃𝑖] for 𝑧 ∈ {𝑚, 𝑥} is zero.
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